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Agenda
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• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory



Multiprogramming
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• The	OS	runs	multiple	applications	at	the	same	time.
– But	not	really:	have	many	more	processes/threads	than	
available	cores

• Switches	between	processes	very	quickly.	This	is	
called	a	“context	switch”.

• When	jumping	into	process,	set	timer	interrupt.
– When	it	expires,	store	PC,	registers,	etc.	(process	state).
– Pick	a	different	process	to	run	and	load	its	state.
– Set	timer,	change	to	user	mode,	jump	to	the	new	PC.

• Deciding	what	process	to	run	is	called	scheduling.



Protection,	Translation,	Paging
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• Supervisor	mode	does	things	that	normal	mode	
can't…
– But...

• Supervisor	mode	is	not	enough	to	fully	isolate	
applications	from	each	other	or	from	the	OS.
– Application	could	overwrite	another	application’s	memory.
– Also,	may	want	to	address	more	memory	than	we	actually	
have	(e.g.,	for	sparse	data	structures).

• Solution:	Virtual	Memory.	Gives	each	process	the	
illusion	of	a	full	memory	address	space	that	it	has	
completely	for	itself.



What	do	we	need	Virtual	Memory	for?	
Reason	1:	Adding	Disks	to	Hierarchy

• Need	to	devise	a	mechanism	to	“connect”	memory	
and	disk	in	the	memory	hierarchy
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What	do	we	need	Virtual	Memory	for?	
Reason	2:	Simplifying	Memory	for	Apps
• Applications	should	see	
the	straightforward	
memory	layout	we	saw	
earlier	->

• User-space	applications	
should	think	they	own	all	
of	memory

• So	we	give	them	a	virtual
view	of	memory
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What	do	we	need	Virtual	Memory	for?	
Reason	3:	Protection	Between	Processes
• With	a	bare	system,	addresses	issued	with	
loads/stores	are	real	physical addresses

• This	means	any	program	can	issue	any	address,	
therefore	can	access	any	part	of	memory,	even	areas	
which	it	doesn’t	own
– Ex:	The	OS	data	structures

• We	should	send	all	addresses	through	a	mechanism	
that	the	OS	controls,	before	they	make	it	out	to	
DRAM	- a	translation	mechanism

7



VM	+	Supervisor	Mode	combine	to	
Create	Isolation

• Supervisor	mode	is	only entered	into	at	the	trap	handler
– So	its	always	known	(and	hopefully	correct)	code	that	is	part	of	

the	core	operating	system
• This	is	why	"syscall"	generates	an	exception

• Only	Supervisor	mode	can	change Virtual	Memory	
mappings
– So	only	the	core	of	the	operating	system	can	bypass	the	

protections	imposed	on	memory

• These	are	the	invariants	necessary	for	isolation
– Anything	that	can	affect	these	invariants	completely

compromises	the	security	of	the	system
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Address	Spaces
• The	set	of	addresses	labeling	all	of	memory	that	we	
can	access

• Now,	2	kinds:
– Virtual	Address	Space	- the	set	of	addresses	that	the	user	
program	knows	about

– Physical	Address	Space	- the	set	of	addresses	that	map	to	
actual	physical	cells	in	memory
• Hidden	from	user	applications

• So,	we	need	a	way	to	map	between	these	two	
address	spaces
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Blocks	vs.	Pages

• In	caches,	we	dealt	with	individual	blocks
– Usually	~64B	on	modern	systems
– We	could	“divide”	memory	into	a	set	of	blocks

• In	VM,	we	deal	with	individual	pages
– Usually	~4	KB	on	modern	systems
– Now,	we’ll	“divide”	memory	into	a	set	of	pages

• Common	point	of	confusion:	Bytes,	Words,	Blocks,	
Pages	are	all	just	different	ways	of	looking	at	
memory!
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Bytes,	Words,	Blocks,	Pages
Ex:	16	KiB DRAM,	4	KiB Pages	(for	VM),	128	B	blocks	
(for	caches),	4	B	words	(for	lw/sw)

11

Page	3

Page	2

Page	1

Page	0

16	
KiB

Block	0

Block	31

Word	0

Word	31

1	Memory

1	Page 1	Block

Can	think	of	
memory	as:
- 4	Pages
OR
- 128	Blocks
OR
- 4096	Words

Can	think	of	
a	page	as:
- 32	Blocks
OR
- 1024	Words



Address	Translation

• So,	what	do	we	want	to	achieve	at	the	hardware	
level?
– Take	a	Virtual	Address,	that	points	to	a	spot	in	the	Virtual	
Address	Space	of	a	particular	program,	and	map	it	to	a	
Physical	Address,	which	points	to	a	physical	spot	in	DRAM	
of	the	whole	machine
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Address	Translation
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Virtual	Page	Number Offset

Physical Page	Number Offset
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The	rest	of	the	lecture	is	all	about	implementing
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“Bare”	5-Stage	Pipeline

• In	a	bare	machine,	the	only	kind	of	address	is	a	
physical	address
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Modern	Virtual	Memory	Systems
Illusion	of	a	large,	private,	uniform	store

Protection
• several users, each with their private  

address space and one or more shared 
address spaces

Demand Paging
• Provides the ability to run programs 

larger than the primary memory

• Hides differences in machine 
configurations

The price is address translation on 
each memory reference
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Swapping
Store

VA PAmapping
TLB



Dynamic	Address	Translation
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Motivation
Multiprogramming, multitasking:  Desire to 
execute more than one process at a time (more 
than one process can reside in main memory at 
the same time).

Location-independent programs
Programming and storage management ease
Þ base register – add offset to each address

Protection
Independent programs should not affect
each other inadvertently
Þ bound register – check range of access

(Note: Multiprogramming drives requirement for 
resident supervisor (OS) software to manage context 
switches between multiple programs)

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS



Simple	Base	and	Bound	Translation
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Separate	Areas	for	Program	and	Data
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Base	and	Bound	Machine

[	Can	fold	addition	of	base	register	into	(register+immediate)	address	
calculation	using	a	carry-save	adder	(sums	three	numbers	with	only	a	few	
gate	delays	more	than	adding	two	numbers)	] 19

PC
Inst.	
Cache D Decode E M

Data	
Cache W+

Main	Memory	 (DRAM)

Memory	Controller

Physical	
Address

Physical	
Address

Physical	
Address

Physical	Address

Data	Bound	
Register

Data	Base	
Register

≤

+

Logical	
Address

Bounds	Violation?

Physical	
Address

Prog.	Bound	
Register

Program	Base	
Register

≤

+

Logical	
Address

Bounds	Violation?



Memory	Fragmentation
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As users come and go, the storage is “fragmented”. 
Therefore, at some stage programs have to be moved
around to compact the storage.
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• Processor-generated	address can	be	split	into:

Paged	Memory	Systems

Page tables make it possible to store the 
pages of a program non-contiguously.
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• A	page	table	contains	the	physical	address	of	the	base	of	each	page
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Private	Address	Space	per	User

• Each user has a page table 
• Page table contains an entry for each user page
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Where	Should	Page	Tables	Reside?
• Space	required	by	the	page	tables	(PT)	is	proportional	to	

the	address	space,	number	of	users, ...
Þ Too	large	to	keep	in	cpu registers

• Idea:	Keep	PTs in	the	main	memory
– Needs	one	reference	to	retrieve	the	page	base	address	and	

another	to	access	the	data	word
Þ doubles	the	number	of	memory	references!

Caching	helps
Automatic	caching	if	the	processor	uses	full	page	tables
Manual	caching	controlled	by	the	OS	with	the	Translation	
Lookaside	Buffer	(TLB)
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Page	Tables	in	Physical	Memory
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Page	Table	Tricks…
• Can	actually	have	multiple	processes	referring	to	the	same	

physical	memory
– Enables	"shared	memory"	between	processes

• Page	table	entry	can	say	"this	exists	on	disk"
– When	such	memory	is	accessed	it	triggers	an	exception	instead
– The	operating	system	can	copy	the	data	into	memory	("swap	it	in")	

and	then	resume	the	trapped	instruction
• How	it	gives	the	illusion	of	infinite	memory

• Can	use	that	same	method	to	efficiently	read	files
– File	is	"memory	mapped",	when	read	it	is	simply	paged	in	like	other	
– Allows	an	efficient	method	to	handle	large	files	conveniently
– When	data	is	changed	can	use	the	same	method	used	to	"swap	out"	

unused	memory
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The	Ultimate	Page-Table	Trick:
Rowhammer

• An	unspeakably	cool	security	vulnerability…
• DRAM	(unless	you	pay	for	error	correcting	(ECC)	

memory)	is	actually	unreliable
– Can	repeatedly	read/write	the	same	location	("hammer	the	

row"	and	eventually	cause	an	error	in	some	physically	distinct	
memory	location

• Can	tell	the	OS	"I	want	to	map	this	same	block	of	
memory	at	multiple	addresses	in	my	process…"
– Which	creates	additional	page	table	entries

• Enter	Rowhammer
– It	seems	all	vunerabilities	get	named	now,	but	this	one	is	cool	

enough	to	deserve	a	name!
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How	RowHammer Works
• Step	1:	Allocate	a	single	page	of	

memory
• Step	2:	Make	the	OS	make	a	

gazillion	page-table	entries	pointing	
to	the	same	page

• Step	3:	Hammer	the	DRAM	until	
one	of	those	entries	gets	corrupted
– Now	causes	that	memory	page	to	point	

to	a	set	of	page	table	entries	instead
• Step	4:	Profit

– Well,	the	ability	to	read	and	write	to	
any	physical	address	in	the	system,	
same	difference	
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Clicker	Question…

• So	how	cool	is	this?
– A	->	Supercool
– E	->	Eh,	whatever
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In	Conclusion
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• Once	we	have	a	basic	machine,	it’s	mostly	up	to	the	
OS	to	use	it	and	define	application	interfaces.

• Hardware	helps	by	providing	the	right	abstractions	
and	features	(e.g.,	Virtual	Memory,	I/O).

• If	you	want	to	learn	more	about	operating	systems,	
you	should	take	CS162!

• What’s	next	in	CS61C?
– More	details	on	I/O
– More	about	Virtual	Memory


