
CS	61C:	Great	Ideas	in	Computer	
Architecture	(Machine	Structures)

Intro	to	Virtual	Memory

Instructors:
Vladimir	Stojanovic	and	Nicholas	Weaver
http://inst.eecs.berkeley.edu/~cs61c/

1

Agenda

2

• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

Multiprogramming

3

• The	OS	runs	multiple	applications	at	the	same	time.
– But	not	really:	have	many	more	processes/threads	than	
available	cores

• Switches	between	processes	very	quickly.	This	is	
called	a	“context	switch”.

• When	jumping	into	process,	set	timer	interrupt.
– When	it	expires,	store	PC,	registers,	etc.	(process	state).
– Pick	a	different	process	to	run	and	load	its	state.
– Set	timer,	change	to	user	mode,	jump	to	the	new	PC.

• Deciding	what	process	to	run	is	called	scheduling.

Protection,	Translation,	Paging

4

• Supervisor	mode	does	things	that	normal	mode	
can't…
– But...

• Supervisor	mode	is	not	enough	to	fully	isolate	
applications	from	each	other	or	from	the	OS.
– Application	could	overwrite	another	application’s	memory.
– Also,	may	want	to	address	more	memory	than	we	actually	
have	(e.g.,	for	sparse	data	structures).

• Solution:	Virtual	Memory.	Gives	each	process	the	
illusion	of	a	full	memory	address	space	that	it	has	
completely	for	itself.

What	do	we	need	Virtual	Memory	for?	
Reason	1:	Adding	Disks	to	Hierarchy

• Need	to	devise	a	mechanism	to	“connect”	memory	
and	disk	in	the	memory	hierarchy

5

What	do	we	need	Virtual	Memory	for?	
Reason	2:	Simplifying	Memory	for	Apps
• Applications	should	see	
the	straightforward	
memory	layout	we	saw	
earlier	->

• User-space	applications	
should	think	they	own	all	
of	memory

• So	we	give	them	a	virtual
view	of	memory

6

code

static	data

heap

stack~	7FFF	FFFFhex

~	0000	0000hex

What	do	we	need	Virtual	Memory	for?	
Reason	3:	Protection	Between	Processes
• With	a	bare	system,	addresses	issued	with	
loads/stores	are	real	physical addresses

• This	means	any	program	can	issue	any	address,	
therefore	can	access	any	part	of	memory,	even	areas	
which	it	doesn’t	own
– Ex:	The	OS	data	structures

• We	should	send	all	addresses	through	a	mechanism	
that	the	OS	controls,	before	they	make	it	out	to	
DRAM	- a	translation	mechanism

7

VM	+	Supervisor	Mode	combine	to	
Create	Isolation

• Supervisor	mode	is	only entered	into	at	the	trap	handler
– So	its	always	known	(and	hopefully	correct)	code	that	is	part	of	

the	core	operating	system
• This	is	why	"syscall"	generates	an	exception

• Only	Supervisor	mode	can	change Virtual	Memory	
mappings
– So	only	the	core	of	the	operating	system	can	bypass	the	

protections	imposed	on	memory

• These	are	the	invariants	necessary	for	isolation
– Anything	that	can	affect	these	invariants	completely

compromises	the	security	of	the	system

8

Address	Spaces
• The	set	of	addresses	labeling	all	of	memory	that	we	
can	access

• Now,	2	kinds:
– Virtual	Address	Space	- the	set	of	addresses	that	the	user	
program	knows	about

– Physical	Address	Space	- the	set	of	addresses	that	map	to	
actual	physical	cells	in	memory
• Hidden	from	user	applications

• So,	we	need	a	way	to	map	between	these	two	
address	spaces

9

Blocks	vs.	Pages

• In	caches,	we	dealt	with	individual	blocks
– Usually	~64B	on	modern	systems
– We	could	“divide”	memory	into	a	set	of	blocks

• In	VM,	we	deal	with	individual	pages
– Usually	~4	KB	on	modern	systems
– Now,	we’ll	“divide”	memory	into	a	set	of	pages

• Common	point	of	confusion:	Bytes,	Words,	Blocks,	
Pages	are	all	just	different	ways	of	looking	at	
memory!

10

Bytes,	Words,	Blocks,	Pages
Ex:	16	KiB DRAM,	4	KiB Pages	(for	VM),	128	B	blocks	
(for	caches),	4	B	words	(for	lw/sw)

11

Page	3

Page	2

Page	1

Page	0

16	
KiB

Block	0

Block	31

Word	0

Word	31

1	Memory

1	Page 1	Block

Can	think	of	
memory	as:
- 4	Pages
OR
- 128	Blocks
OR
- 4096	Words

Can	think	of	
a	page	as:
- 32	Blocks
OR
- 1024	Words

Address	Translation

• So,	what	do	we	want	to	achieve	at	the	hardware	
level?
– Take	a	Virtual	Address,	that	points	to	a	spot	in	the	Virtual	
Address	Space	of	a	particular	program,	and	map	it	to	a	
Physical	Address,	which	points	to	a	physical	spot	in	DRAM	
of	the	whole	machine

12

Virtual	Page	Number OffsetVirtual	Address

Physical	Address Physical Page	Number Offset

Address	Translation

13

Virtual	Page	Number Offset

Physical Page	Number Offset

Virtual	Address

Physical	Address

Address	
Translation

Copy	
Bits

The	rest	of	the	lecture	is	all	about	implementing

14

“Bare”	5-Stage	Pipeline

• In	a	bare	machine,	the	only	kind	of	address	is	a	
physical	address

PC
Inst.	
Cache D Decode E M

Data	
Cache W+

Main	Memory	 (DRAM)

Memory	Controller

Physical	
Address

Physical	
Address

Physical	
Address

Physical	
Address

Physical	Address

15

Modern	Virtual	Memory	Systems
Illusion	of	a	large,	private,	uniform	store

Protection
• several users, each with their private

address space and one or more shared
address spaces

Demand Paging
• Provides the ability to run programs

larger than the primary memory

• Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping
TLB

Dynamic	Address	Translation

16

Motivation
Multiprogramming, multitasking: Desire to
execute more than one process at a time (more
than one process can reside in main memory at
the same time).

Location-independent programs
Programming and storage management ease
Þ base register – add offset to each address

Protection
Independent programs should not affect
each other inadvertently
Þ bound register – check range of access

(Note: Multiprogramming drives requirement for
resident supervisor (OS) software to manage context
switches between multiple programs)

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS

Simple	Base	and	Bound	Translation

17

Load X

Program
Address Space

Bound
Register

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
AddressLogical

Address

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

Base Physical Address

Segment Length

≤

Separate	Areas	for	Program	and	Data

18

Physical	
Address

Physical	
Address

Load	X

Program
Address
Space

M
ai
n	
M
em

or
y

data
segment

Data	Bound	
Register
Mem.	Address	
Register

Data	Base	
Register

≤

+

Bounds
Violation?

Program	Bound	
Register

Program	Counter

Program	Base	
Register

≤

+

Bounds
Violation?

program
segment

Logical	
Address

Logical	
Address

What is an advantage of this separation?

(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Base	and	Bound	Machine

[Can	fold	addition	of	base	register	into	(register+immediate)	address	
calculation	using	a	carry-save	adder	(sums	three	numbers	with	only	a	few	
gate	delays	more	than	adding	two	numbers)] 19

PC
Inst.	
Cache D Decode E M

Data	
Cache W+

Main	Memory	 (DRAM)

Memory	Controller

Physical	
Address

Physical	
Address

Physical	
Address

Physical	Address

Data	Bound	
Register

Data	Base	
Register

≤

+

Logical	
Address

Bounds	Violation?

Physical	
Address

Prog.	Bound	
Register

Program	Base	
Register

≤

+

Logical	
Address

Bounds	Violation?

Memory	Fragmentation

20

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K
24K

24K

32K

24K

user 1
user 2

user 3

OS
Space

16K
24K
16K

32K

24K

user 1
user 2

user 3

user 5

user 4
8K

Users 4 & 5
arrive

Users 2 & 5
leave OS

Space

16K
24K
16K

32K

24K

user 1

user 4
8K

user 3

free

21

• Processor-generated	address can	be	split	into:

Paged	Memory	Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

1
0

2

3

page number offset

Physical
Memory

• A	page	table	contains	the	physical	address	of	the	base	of	each	page

22

Private	Address	Space	per	User

• Each user has a page table
• Page table contains an entry for each user page

VA1User 1

Page Table

VA1User 2

Page Table

VA1User 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages

23

Where	Should	Page	Tables	Reside?
• Space	required	by	the	page	tables	(PT)	is	proportional	to	

the	address	space,	number	of	users, ...
Þ Too	large	to	keep	in	cpu registers

• Idea:	Keep	PTs in	the	main	memory
– Needs	one	reference	to	retrieve	the	page	base	address	and	

another	to	access	the	data	word
Þ doubles	the	number	of	memory	references!

Caching	helps
Automatic	caching	if	the	processor	uses	full	page	tables
Manual	caching	controlled	by	the	OS	with	the	Translation	
Lookaside	Buffer	(TLB)

24

Page	Tables	in	Physical	Memory

VA1

User 1 Virtual
Address Space

User 2 Virtual
Address Space

PT
User
1

PT
User
2

VA1

Ph
ys

ic
al

 M
em

or
y

Page	Table	Tricks…
• Can	actually	have	multiple	processes	referring	to	the	same	

physical	memory
– Enables	"shared	memory"	between	processes

• Page	table	entry	can	say	"this	exists	on	disk"
– When	such	memory	is	accessed	it	triggers	an	exception	instead
– The	operating	system	can	copy	the	data	into	memory	("swap	it	in")	

and	then	resume	the	trapped	instruction
• How	it	gives	the	illusion	of	infinite	memory

• Can	use	that	same	method	to	efficiently	read	files
– File	is	"memory	mapped",	when	read	it	is	simply	paged	in	like	other	
– Allows	an	efficient	method	to	handle	large	files	conveniently
– When	data	is	changed	can	use	the	same	method	used	to	"swap	out"	

unused	memory

25

The	Ultimate	Page-Table	Trick:
Rowhammer

• An	unspeakably	cool	security	vulnerability…
• DRAM	(unless	you	pay	for	error	correcting	(ECC)	

memory)	is	actually	unreliable
– Can	repeatedly	read/write	the	same	location	("hammer	the	

row"	and	eventually	cause	an	error	in	some	physically	distinct	
memory	location

• Can	tell	the	OS	"I	want	to	map	this	same	block	of	
memory	at	multiple	addresses	in	my	process…"
– Which	creates	additional	page	table	entries

• Enter	Rowhammer
– It	seems	all	vunerabilities	get	named	now,	but	this	one	is	cool	

enough	to	deserve	a	name!

26

How	RowHammer Works
• Step	1:	Allocate	a	single	page	of	

memory
• Step	2:	Make	the	OS	make	a	

gazillion	page-table	entries	pointing	
to	the	same	page

• Step	3:	Hammer	the	DRAM	until	
one	of	those	entries	gets	corrupted
– Now	causes	that	memory	page	to	point	

to	a	set	of	page	table	entries	instead
• Step	4:	Profit

– Well,	the	ability	to	read	and	write	to	
any	physical	address	in	the	system,	
same	difference	

27

Physical	Memory
Process's

Virtual	Memory

…

Clicker	Question…

• So	how	cool	is	this?
– A	->	Supercool
– E	->	Eh,	whatever

28

In	Conclusion

29

• Once	we	have	a	basic	machine,	it’s	mostly	up	to	the	
OS	to	use	it	and	define	application	interfaces.

• Hardware	helps	by	providing	the	right	abstractions	
and	features	(e.g.,	Virtual	Memory,	I/O).

• If	you	want	to	learn	more	about	operating	systems,	
you	should	take	CS162!

• What’s	next	in	CS61C?
– More	details	on	I/O
– More	about	Virtual	Memory

