
CS	61C:	Great	Ideas	in	Computer	
Architecture	(Machine	Structures)
Operating	Systems,	Interrupts

Instructors:
Nicholas	Weaver	&	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

1

Memory

CS61C	so	far…

2

CPU

Caches

MIPS	Assembly

C	Programs

•  Four##words/block,#cache#size#=#1K#words#
#!

MulWwordKBlock#DirectKMapped#Cache#

8#
Index#

Data#Index# Tag#Valid#

0#

1#

2#

.#

.#

.#

253#

254#

255#

31#30###.#.#.#################13#12##11####.#.#.####4##3##2##1##0#
Byte#

offset#

20#

20#Tag#

Hit# Data#

32#

Block#offset#

What!kind!of!locality!are!we!taking!advantage!of?!
31#

#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw $t0, 4($r0)
addi $t1, $t0, 3
beq $t1, $t2, foo
nop

Project	1

Project	2

Labs

So	how	is	this	any	different?

3

Keyboard

Screen

Storage

Memory

Adding	I/O

4

CPU

Caches

MIPS	Assembly

C	Programs

•  Four##words/block,#cache#size#=#1K#words#
#!

MulWwordKBlock#DirectKMapped#Cache#

8#
Index#

Data#Index# Tag#Valid#

0#

1#

2#

.#

.#

.#

253#

254#

255#

31#30###.#.#.#################13#12##11####.#.#.####4##3##2##1##0#
Byte#

offset#

20#

20#Tag#

Hit# Data#

32#

Block#offset#

What!kind!of!locality!are!we!taking!advantage!of?!
31#

#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw $t0, 4($r0)
addi $t1, $t0, 3
beq $t1, $t2, foo
nop

Project	1

Project	2

I/O	(Input/Output)

Screen Keyboard Storage

CPU+$s,	etc.
Memory

Raspberry	Pi	3	($35	on	Amazon)

5

Storage	I/O
(Micro	SD	Card)

Serial	I/O
(USB)

Network	I/O
(Ethernet)Screen	I/O

(HDMI)

It’s	a	real	computer!

6

But	wait…

7

• That’s	not	the	same!	When	we	run	MARS,	it	only	
executes	one	program	and	then	stops.

• When	I	switch	on	my	computer,	I	get	this:

Yes,	but	that’s	just	software!	The	Operating	System	(OS)

Well,	“just	software”

• The	biggest	piece	of	software	on	your	machine?
• How	many	lines	of	code?	These	are	guesstimates:

8

Codebases	(in	millions	of	lines	of	code).	CC	BY-NC	3.0	— David	McCandless ©	2013
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/	

What	does	the	OS	do?

9

• One	of	the	first	things	that	runs	when	your	computer	
starts	(right	after	firmware/bootloader)

• Loads,	runs	and	manages	programs:
– Multiple	programs	at	the	same	time	(time-sharing)
– Isolate	programs	from	each	other	(isolation)
– Multiplex	resources	between	applications	(e.g.,	devices)

• Services:	File	System,	Network	stack,	etc.
• Finds	and	controls	all	the	devices	in	the	machine	in	a	
general	way	(using	“device	drivers”)

Administrivia

• Project	4	delayed	due	date	to	tomorrow
– But	extra	credit	for	turning	it	in	today

• Project	5	will	be	out	ASAP
– I'm	worried	that	we	made	it	too	easy,	but	eh…

10

Agenda

11

• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

Agenda

12

• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

How	to	interact	with	devices?

13

• Assume	a	program	running	on	a	CPU.	How	does	it	
interact	with	the	outside	world?

• Need	I/O	interface	for	Keyboards,
Network,	Mouse,	Screen,	etc.
– Connect	to	many types	of	devices	
– Control	these	devices,	respond
to	them,	and	transfer	data

– Present	them	to	user
programs	so
they	are	useful

cmd	reg.
data	reg.

Operating	System

Proc Mem

PCI	Bus

SATA/USB	Bus

Instruction	Set	Architecture	for	I/O

• What	must	the	processor	do	for	I/O?
– Input:				reads	a	sequence	of	bytes	
– Output:	writes	a	sequence	of	bytes

• Some	processors	have	special	input	and	output	
instructions

• Alternative	model	(used	by	MIPS):
– Use	loads	for	input,	stores	for	output	(in	small	pieces)
– Called	Memory	Mapped	Input/Output
– A	portion	of	the	address	space	dedicated	to	
communication	paths	to	Input	or	Output	devices	(no	
memory	there)

14

Memory	Mapped	I/O

• Certain	addresses	are	not	regular	memory
• Instead,	they	correspond	to	registers	in	I/O	devices

cntrl	reg.
data	reg.

0

0xFFFFFFFF

0xFFFF0000

address

15

Processor-I/O	Speed	Mismatch

• 1GHz	microprocessor	can	execute	1B	load	or	store	
instructions	per	second,	or	4,000,000	KB/s	data	rate
• I/O	data	rates	range	from	0.01	KB/s	to	1,250,000	KB/s

• Input:	device	may	not	be	ready	to	send	data	as	fast	as	
the	processor	loads	it
• Also,	might	be	waiting	for	human	to	act

• Output:	device	not	be	ready	to	accept	data	as	fast	as	
processor	stores	it

• What	to	do?

16

Processor	Checks	Status	before	Acting

• Path	to	a	device	generally	has	2	registers:
• Control	Register,	says	it’s	OK	to	read/write		(I/O	ready)	[think	

of	a	flagman	on	a	road]
• Data	Register,	contains	data

• Processor	reads	from	Control	Register	in	loop,	waiting	
for	device	to	set	Ready bit	in	Control	reg
(0	Þ 1)	to	say	it’s	OK

• Processor	then	loads	from	(input)	or	writes	to	(output)	
data	register
• Load	from	or	Store	into	Data	Register	resets	Ready	bit

(1	Þ 0)	of	Control	Register
• This	is	called	“Polling”

17

• Input:	Read	from	keyboard	into	$v0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 0($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

• Output:	Write	to	display	from	$a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

“Ready”	bit	is	from	processor’s	point	of	view!

I/O	Example	(polling)

18

Cost	of	Polling?

• Assume	for	a	processor	with	a	1GHz	clock	it	takes	
400	clock	cycles	for	a	polling	operation	(call	polling	
routine,	accessing	the	device,	and	returning).	
Determine	%	of	processor	time	for	polling
– Mouse:	polled	30	times/sec	so	as	not	to	miss	user	
movement

– Hard	disk:	assume	transfers	data	in	16-Byte	chunks	and	can	
transfer	at	16	MB/second.	Again,	no	transfer	can	be	
missed.	(we’ll	come	up	with	a	better	way	to	do	this)

19

%	Processor	time	to	poll
• Mouse	Polling	[clocks/sec]	

=	30	[polls/s]	*	400	[clocks/poll]	=	12K	[clocks/s]

• %	Processor	for	polling:	
12*103 [clocks/s]	/	1*109 [clocks/s]	=	0.0012%
Þ Polling	mouse	little	impact	on	processor

20

Clicker	Time
Hard	disk:	transfers	data	in	16-Byte	chunks	and	can	
transfer	at	16	MB/second.	No	transfer	can	be	missed.	
What	percentage	of	processor	time	is	spent	in	polling	
(assume	1GHz	clock)?

• A:	2%
• B:	4%
• C:	20%
• D:	40%
• E:	80%

21

%	Processor	time	to	poll	hard	disk
• Frequency	of	Polling	Disk

=	16	[MB/s]	/	16	[B/poll]	=	1M	[polls/s]

• Disk	Polling,	Clocks/sec
=	1M	[polls/s]	*	400	[clocks/poll]
=	400M	[clocks/s]

• %	Processor	for	polling:	
400*106 [clocks/s]	/	1*109 [clocks/s]	=	40%
Þ Unacceptable	
(Polling	is	only	part	of	the	problem	– main	problem	is	that	
accessing	in	small	chunks	is	inefficient)

22

What	is	the	alternative	to	polling?

• Wasteful	to	have	processor	spend	most	of	its	time	
“spin-waiting”	for	I/O	to	be	ready

• Would	like	an	unplanned	procedure	call	that	would	
be	invoked	only	when	I/O	device	is	ready

• Solution:	use	exception	mechanism	to	help	
I/O.		Interrupt	program	when	I/O	ready,	return	when	
done	with	data	transfer

• Allow	to	register	(post)	interrupt	handlers:	functions	
that	are	called	when	an	interrupt	is	triggered

23

Interrupt-driven	I/O

Label: sll $t1,$s3,2
addu $t1,$t1,$s5

lw $t1,0($t1)
add $s1,$s1,$t1

addu $s3,$s3,$s4
bne $s3,$s2,Label

Stack	Frame

Stack	Frame

Stack	Frame

handler: lui $t0, 0xffff
lw $t1, 0($t0)
andi $t1,$t1,0x1
lw $v0, 4($t0)
sw $t1, 8($t0)
ret

Interrupt(SPI0)

CPU	Interrupt	Table

SPI0 handler

… …

Handler	Execution
1. Incoming	 interrupt	suspends	 instruction	stream
2. Looks	up	the	vector	(function	 address)	of	a	handler	in

an	interrupt	vector	table	stored	within	 the	CPU
3. Perform	a	jal to	the	handler	 (needs	 to	store	any	state)	
4. Handler	run	on	current	stack	and	returns	on	finish

(thread	doesn’t	notice	that	a	handler	was	run)

24

Direct	Memory	Access

• Complements	interrupts:
– The	device	itself	can	directly	read	or	write	to	a	specified	
block	of	memory

• Used	to	buffer	transfers
– DMA	write	the	data
– Then trigger	an	interrupt

• Can	even	go	to	great	extremes
– You	can	buy	an	FPGA-based	network	card	which	will	
directly	write	into	process	buffers

• We	will	go	into	this	in	more	detail	later	on

25

Agenda

26

• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

What	happens	at	boot?

27

• When	the	computer	switches	on,	it	does	the	same	as	
MARS:	the	CPU	executes	instructions	from	some	
start	address	(stored	in	Flash	ROM)

CPU

PC	=	0x2000	(some	default	value) Address	Space

0x2000:
addi $t0, $zero, 0x1000
lw $t0, 4($r0)
…

(Code to copy firmware into
regular memory and jump
into it)

Memory	mapped

What	happens	at	boot?

28

• When	the	computer	switches	on,	it	does	the	same	as	
MARS:	the	CPU	executes	instructions	from	some	
start	address	(stored	in	Flash	ROM)

1.	BIOS:	Find	a	storage
device	and	load	first	
sector	(block	of	data)

2.	Bootloader (stored	on,	e.g.,	
disk):	Load	the	OS	kernel from	
disk	into	a	location	in	memory	
and	jump	 into	it.

3.	OS	Boot:	Initialize	
services,	drivers,	etc.

4.	Init:	Launch	an	application	
that	waits	for	input	in	loop	
(e.g.,	Terminal/Desktop/...

Validated	Boot…

• The	old-school	BIOS	(Basic	Input/Output System)	just	
started	running	whatever	was	in	the	boot	sector
– Allowed	all	sorts	of	shenanigans

• Modern	firmware	(UEFI	(Universal	Extensible	Firmware	
Interface),	iPhone,	etc)	performs	validated	boot
– Cryptographically	verifies	that	the	boot	code	is	signed	by	a	valid	

cryptographic	signature

• Essential	to	maintain	a	chain	of	trust
– Trust	the	hardware	and	EFI	to	validate	the	boot…

• If	you	run	Windows	only,	turn	this	on!

29

Launching	Applications

30

• Applications	are	called	“processes”	in	most	OSs.
• Created	by	another	process	calling	into	an	OS	routine	

(using	a	“syscall”,	more	details	later).
– Depends	on	OS,	but	Linux	uses	fork to	create	a	new	process,	and	

execve to	load	application.
• Loads	executable	file	from	disk	(using	the	file	system	

service:	often	just	'mapping'	the	file	into	memory	to	be	
loaded	on	demand,	which	we	will	get	to	when	talking	
about	virtual	memory)	and	puts	instructions	&	data	into	
memory	(.text,	.data	sections),	prepare	stack	and	heap.

• Set	argc and	argv,	jump	into	the	main	function.

Supervisor	Mode

31

• If	something	goes	wrong	in	an	application,	it	could	
crash	the	entire	machine.	And	what	about	malware,	
etc.?

• The	OS	may	need	to	enforce	resource	constraints	to	
applications	(e.g.,	access	to	devices).

• To	help	protect	the	OS	from	the	application,	CPUs	have	
a	supervisor	mode	bit.
– A	process	can	only	access	a	subset	of	instructions	and	
(physical)	memory	when	not	in	supervisor	mode	(user	
mode).

– Process	can	change	out	of	supervisor	mode	using	a	special	
instruction,	but	not	into	it	directly	– only	using	an	interrupt.

Syscalls

32

• What	if	we	want	to	call	into	an	OS	routine?	(e.g.,	to	
read	a	file,	launch	a	new	process,	send	data,	etc.)
– Need	to	perform	a	syscall:	set	up	function	arguments	in	
registers,	and	then	raise	software	interrupt

– OS	will	perform	the	operation	and	return	to	user	mode
• Also,	OS	uses	interrupts	for	scheduling	process	
execution:
– OS	sets	scheduler	timer	interrupt	then	drops	to	user	mode	
and	start	executing	a	user	task,	when	interrupts	triggers,	
switch	into	supervisor	mode,	select	next	task	to	execute	(&	
set	timer)	and	drop	back	to	user	mode.

• This	way,	the	OS	can	mediate	access	to	all	resources,	
including	devices	and	the	CPU	itself.

33

Traps/Interrupts/Execeptions:
altering	the	normal	flow	of	control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap
handler

An external or internal event that needs to be processed - by
another program – the OS. The event is often unexpected from
original program’s point of view.

Terminology
In	CS61C	(you’ll	see	other	definitions	in	use	elsewhere):
• Interrupt – caused	by	an	event	external to	current	

running	program	(e.g.	key	press,	mouse	activity)
– Asynchronous	to	current	program,	can	handle	interrupt	on	any	

convenient	instruction
• Exception – caused	by	some	event	during	execution	of	

one	instruction	of	current	running	program
– Examples	include	integer	overflow	(add),	lw/sw to	invalid	

memory,	not	a	valid	opcode,	etc…
– Or	deliberate	syscall	operation
– Synchronous,	must	handle	exception	on	instruction	that	causes	

exception
• Trap – action	of	servicing	interrupt	or	exception	by	

hardware	jump	to	“trap	handler”	code
34

Precise	Traps
• Trap	handler’s	view	of	machine	state	is	that	every	

instruction	prior	to	the	trapped	one	has	completed,	and	no	
instruction	after	the	trap	has	executed.

• Implies	that	handler	can	return	from	an	interrupt	by	
restoring	user	registers	and	jumping	back	to	interrupted	
instruction	(EPC	register	will	hold	the	instruction	address)
– Interrupt	handler	software	doesn’t	need	to	understand	the	

pipeline	of	the	machine,	or	what	program	was	doing!
– More	complex	to	handle	trap	caused	by	an	exception	than	

interrupt
• Providing	precise	traps	is	tricky	in	a	pipelined	superscalar	

out-of-order	processor!
– But	handling	imprecise	interrupts	in	software	is	even	worse.

35

36

Trap	Handling	in	5-Stage	Pipeline

• How	to	handle	multiple	simultaneous	
exceptions	in	different	pipeline	stages?

• How	and	where	to	handle	external	
asynchronous	interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

37

Save	Exceptions	Until	Commit

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

38

Handling	Traps	in	In-Order	Pipeline

• Hold	exception	flags	in	pipeline	until	commit	point	(M	
stage)

• Exceptions	in	earlier	instructions	override	exceptions	
in	later	instructions

• Exceptions	in	earlier	pipe	stages	override	later	
exceptions	for	a	given	 instruction

• Inject	external	interrupts	at	commit	point	(override	
others)

• If	exception/interrupt	at	commit:	update	Cause	and	
EPC	registers,	kill	all	stages,	inject	handler	PC	into	
fetch	stage

39

Trap	Pipeline	Diagram
time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Trap Handler code IF5 ID5 EX5 MA5 WB5

In	Conclusion

40

• Once	we	have	a	basic	machine,	it’s	mostly	up	to	the	
OS	to	use	it	and	define	application	interfaces.

• Hardware	helps	by	providing	the	right	abstractions	
and	features	(e.g.,	Virtual	Memory,	I/O).

• If	you	want	to	learn	more	about	operating	systems,	
you	should	take	CS162!

• What’s	next	in	CS61C?
– More	details	on	I/O
– More	about	Virtual	Memory

