
CS	61C:	Great	Ideas	in	Computer	
Architecture	(Machine	Structures)
MapReduce,	Spark,	and	HDFS

Instructors:
Nicholas	Weaver	&	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/



New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“cats”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Deep	Learning	for	

image	classification

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages 2

Smart
Phone

Warehouse	
Scale	

Computer
Harness

Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Software								Hardware



Data-Level	Parallelism	(DLP)
• SIMD
– Supports	data-level	parallelism	in	a	single	machine

– Additional	instructions	&	hardware

e.g.	Matrix	multiplication	in	memory

• DLP	on	WSC

– Supports	data-level	parallelism	across	multiple	machines

– MapReduce&	scalable	file	systems

e.g.	Training	CNNs	with	images	across	multiple	disks

3



What	is	MapReduce?
• Simple	data-parallel	programming	model and	

implementation for	processing	large	dataset
• Users	specify	the	computation	in	terms	of	
– a	map function,	and	
– a	reduce function

• Underlying	runtime	system
– Automatically	parallelize the	computation	across	large	
scale	clusters	of	machines.

– Handlesmachine	failure
– Schedule inter-machine	communication	to	make	efficient	
use	of	the	networks

4

Jeffrey	Dean	and	Sanjay	Ghemawat,	“MapReduce:	Simplified	Data	Processing	on	Large	
Clusters,”	6th USENIX	Symposium	on	Operating	Systems	Design	and	Implementation,	2004.	
(optional	 reading,	 linked	on	course	homepage	– a	digestible	CS	paper	at	the	61C	level)



What	is	MapReduce used	for?
• At	Google:

– Index	construction	for	Google	Search
– Article	clustering	for	Google	News
– Statistical	machine	translation
– For	computing	multi-layers	street	maps

• At	Yahoo!:
– “Web	map”	powering	Yahoo!	Search
– Spam	detection	for	Yahoo!	Mail

• At	Facebook:
– Data	mining
– Ad	optimization
– Spam	detection

5



Inspiration:	Map	&	Reduce	Functions,	
ex:	Python	

Calculate	:	

6

n2
n=1

4

∑

A = [1, 2, 3, 4]
def square(x): 

return x * x
def sum(x, y): 

return x + y
reduce(sum, 

map(square, A))

1 2 3 4

1 4 9 16

5 25

30



• Map:	(in_key, in_value) à list(interm_key, interm_val)
map(in_key, in_val):
// DO WORK HERE
emit(interm_key,interm_val)

– Slice	data	into	“shards”	or	“splits”	and	distribute	to	workers
– Compute	set	of	intermediate	key/value	pairs

• Reduce:	(interm_key, list(interm_value)) à list(out_value)
reduce(interm_key, list(interm_val)): 
// DO WORK HERE
emit(out_key, out_val)

– Combines	all	intermediate	values	for	a	particular	key
– Produces	a	set	of	merged	output	values	(usually	just	one)

MapReduce Programming	Model

7



User-written	Map	function	reads	the	document	data	and
parses	out	the	words.	For	each	word,	it	writes	the	(key,	value)	
pair	of	(word,	1).	That	is,	the	word	is	treated	as	the	intermediate	
key	and	the	associated	value	of	1	means	that	we	saw	the	word	
once.

Map phase:	(doc	name,	doc	contents)	à list(word,	count)
// “I do I learn” à [(“I”,1),(“do”,1),(“I”,1),(“learn”,1)]
map(key, value):
for each word w in value:

emit(w, 1)

MapReduce Word	Count	Example

8

Task	of	counting	the	number	of	occurrences	of	each	
word	in	a	large	collection	of	documents.	



The	intermediate	data	is	then	sorted	by	MapReduce by	keys	and	
the	user’s	Reduce	function	is	called	for	each	unique	key.	In	this	
case,	Reduce	is	called	with	a	list	of	a	"1"	for	each	occurrence	of	
the	word	that	was	parsed	from	the	document.	The	function	adds	
them	up	to	generate	a	total	word	count	for	that	word.

Reduce	phase:	(word,	list(counts))	à (word,	count_sum)
// (“I”, [1,1]) à (“I”,2)
reduce(key, values): 
result = 0
for each v in values:

result += v
emit(key, result)

MapReduce Word	Count	Example

9

Task	of	counting	the	number	of	occurrences	of	each	
word	in	a	large	collection	of	documents.	



MapReduce Implementation

10



MapReduce Execution

11

(1) Split	inputs,	
start	up	programs	
on	a	cluster	of	
machines



MapReduce Execution

12

(2) Assign	map	&	
reduce	tasks	to	
idle	workers



MapReduce Execution

13

(3)	Perform	a	map	task,	
generate	intermediate	
key/value	pairs
(4)	Write	to	the	buffers



MapReduce Execution

14

(5)	Read	intermediate	
key/value	pairs,
sort	them	by	its	key.



MapReduce Execution

15

(6)	Perform	a	reduce	task	
for	each	intermediate	key,
write	the	result	to	the	
output	files



Big	Data	Framework:	Hadoop &	Spark
• Apache	Hadoop
– Open-source	MapReduce Framework
– Hadoop Distributed	File	System	(HDFS)
– MapReduce Java	APIs

• Apache	Spark
– Fast	and	general	engine	for	large-scale	
data	processing.

– Originally	developed	in	the	AMP	lab	at	UC	Berkeley
– Running	on	HDFS
– Provides	Java,	Scala,	Python	APIs	for

• Database
• Machine	learning
• Graph	algorithm

16



WordCount in	Hadoop’s Java	API

17



// RDD: primary abstraction of a distributed 
collection of items
file = sc.textFile(“hdfs://…”)
// Two kinds of operations: 
// Actions: RDD à Value
// Transformations: RDD à RDD
// e.g. flatMap, Map, reduceByKey
file.flatMap(lambda line: line.split())

.map(lambda word: (word, 1))

.reduceByKey(lambda a, b: a + b) 

Word	Count	in	Spark’s	Python	API

18



The	Hadoop	Distributed	File	System

• The	magic	of	Hadoop	is	not	just	in	parallelizing	the	
computation…
– But	building	a	(mostly)	robust,	(mostly)	distributed	file	
system

• Model	is	to	take	a	large	group	of	machines	and	
provide	a	robust,	replicated	filesystem
– Disks	and	machines	can	arbitrarily	crash,	with	some	key	
exceptions
• Done	by	replication:	Usually	at	least	3x

– Can	also	localize	replicas
• EG,	one	copy	in	each	rack

19



HDFS	Blocks
• Files	are	broken	into	fixed-sized	blocks

– Commonly	128	MB!
• Small-element	latency	is	awful…

– It	takes	the	same	amount	of	time	to	read	1B	as	it	does	128	MB!
– But	that	is	a	sensible	decision:	

• A	typical	spinning	disk	already	biases	towards	accessing	 large	blocks:	
200+	MB/s	bandwidth,	5+	ms	latency

• HDFS	needs	to	store	"metadata"	in	memory
– HDFS	is	designed	for	high	throughputoperations

• Any	block	is	replicated	across	multiple	separate	
DataNodes
– Usually	at	least	3x	replication

20



HDFS	NameNode

• The	NameNode tracks	the	filesystemmetadata
– For	each	file,	what	blocks	on	which	DataNodes

• The	NameNode is	both	a	potential	bottleneck	and	
point	of	failure
– Need	lots	of	memory	to	keep	all	the	filesystemmetadata	
in	RAM
• Since	that	is	latency-bound

– Requests	all	go	to	the	NameNode
• Single	point	of	contention

– NameNode fails	and	the	system	goes	down!

21



HDFS's	Single	Points	of	Failure…
• The	NameNode itself

– The	backup	gives	fail-over,	but	that	is	not	the	same
– NameNode,	unlike	DataNodes,	are	often	not	trivially	replaceable

• Since	the	NameNode often	requires	more	memory
• Often:	the	switch

– Need	multiple	redundant	networks	in	a	rack	if	you	need	to	survive	
switch	failures

• Often:	the	power
– Need	systems	with	multiple	power	supplies	and	redundant	power	if	

you	need	to	survive	power	failures
• But	it’s	a	tradeoff:

– HDFS	is	not	supposed to	be	"high	availability",	but	"inexpensive	and	
big	and	(mostly)	reliable":
• '5-9s	of	availability'	aka	'operating	99.999%	of	the	time'	allows	for	just	5	

minutes	downtime	in	a	year!

22



Summary
• Warehouse	Scale	Computers
– New	class	of	computers
– Scalability,	energy	efficiency,	high	failure	rate

• Request-level	parallelism	
e.g.	Web	Search

• Data-level	parallelism	on	a	large	dataset
– MapReduce
– Hadoop,	Spark

23


