
CS	61C:	Great	Ideas	in	Computer	
Architecture	(Machine	Structures)
Warehouse-Scale	Computing

Instructors:
Nicholas	Weaver	&	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/



Coherency	Tracked	by	Cache	Block

• Block	ping-pongs	between	two	caches	even	though	
processors	are	accessing	disjoint	variables

• Effect	called	false	sharing	
• How	can	you	prevent	it?

2



Review:	Understanding	Cache	Misses:
The	3Cs

• Compulsory	(cold	start	or	process	migration,	1st reference):
– First	access	to	block,	impossible	to	avoid;	small	effect	for	long-running	

programs
– Solution:	increase	block	size	(increases	miss	penalty;	very	large	blocks	

could	increase	miss	rate)
• Capacity (not	compulsory	and…)

– Cache	cannot	contain	all	blocks	accessed	by	the	program	even	with	
perfect	replacement	policy	in	fully	associative	cache

– Solution:	increase	cache	size	(may	increase	access	time)
• Conflict	(not	compulsory	or	capacity	and…):

– Multiple	memory	locations	map	to	the	same	cache	location
– Solution	1:	increase	cache	size
– Solution	2:	increase	associativity	(may	increase	access	time)
– Solution	3:	improve	replacement	policy,	e.g..	LRU

3



Fourth	“C”	of	Cache	Misses:
Coherence	Misses

• Misses	caused	by	coherence	traffic	with	other	
processor

• Also	known	as	communication	misses	because	
represents	data	moving	between	processors	working	
together	on	a	parallel	program

• For	some	parallel	programs,	coherence	misses	can	
dominate	total	misses
– It	gets	even	more	complicated	with	multithreaded	
processors:	You	want	separate	threads	on	the	same	CPU	to	
have	common	working	set,	otherwise	you	get	what	could	
be	described	as	incoherence	misses

4



New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“cats”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Deep	Learning	for	

image	classification

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages 5

Smart
Phone

Warehouse	
Scale	

Computer
Harness

Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Software								Hardware



Back	in	2011
• Google	disclosed	that	it	
continuously	uses	enough	
electricity	to	power	200,000	
homes,	but	it	says	that	in	doing	so,	
it	also	makes	the	planet	greener.

• Average	energy	use	per	typical	
user per	month	is	same	as	running	
a	60-watt	bulb	for	3	hours	(180	
watt-hours).

6

Urs Hoelzle,		Google	 SVP
Co-author	of	today’s	reading

http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-its-use-
of-electricity.html



Google’s	WSCs

74/8/16

Ex:	In	Oregon



Containers	in	WSCs

8

Inside	WSC Inside	Container



Server,	Rack,	Array

9



Google	Server	Internals

10

Google	Server



Warehouse-Scale	Computers
• Datacenter
– Collection	of	10,000	to	100,000	servers
– Networks	connecting	them	together

• Single	giganticmachine
• Very	large	applications	(Internet	service):

search,	email,	video	sharing,	social	networking
• Very	high	availability
• “…WSCs	are	no	less	worthy	of	the	expertise	of	computer	

systems	architects	than	any	other	class	of	machines”		
Barroso and	Hoelzle,	2009

11



Unique	to	WSCs
• Ample	Parallelism

– Request-level	Parallelism:	ex:	Web	search
– Data-level	Parallelism:	ex:	Image	classifier	 training

• Scale	and	its	Opportunities/Problems
– Scale	of	economy:	low	per-unit	cost
– Cloud	computing:	rent	computing	power	with	low	costs	(ex:	AWS)

• Operation	Cost	Count
– Longer	life	time	(>10	years)
– Cost	of	equipment	purchases	<<	cost	of	ownership
– Often	semi-custom	or	custom	hardware

• But	consortiums	of	hardware	designs	to	save	cost	there
• Design	for	failure:

– Transient	failures
– Hard	failures
– High	#	of	failures

ex:	4	disks/server,	annual	failure	rate:	4%
à WSC	of	50,000	servers:	1	disk	fail/hour

12



WSC	Architecture

13

1U	Server:
8-16	cores,	
16	GB	DRAM,	
4x4	TB	disk
+	disk	pods

Rack:
40-80	severs,
Local	Ethernet	(1-10Gbps)	switch
(30$/1Gbps/server)

Array	(aka	cluster):
16-32	racks
Expensive	switch
(10X	bandwidth	à 100x	cost)



WSC	Storage	Hierarchy

14

1U	Server:
DRAM:	16GB,	100ns,	20GB/s
Disk:					2TB,				10ms,		200MB/s

Rack(80	severs):
DRAM:	1TB,					300us,		100MB/s
Disk:					160TB,	11ms,			100MB/s

Array(30	racks):
DRAM:	30TB,			500us,	10MB/s
Disk:					4.80PB,	12ms,	10MB/s

Lower	latency	to	DRAM	in	another	server	than	local	disk
Higher	bandwidth	to	local	disk	than	to	DRAM	in	another	server



Workload	Variation

• Online	service:	Peak	usage	2X	off-peak
15

Midnight Noon Midnight

W
or
kl
oa
d

2X



Impact	on	WSC	software
• Latency,	bandwidth	à Performance
– Independent	data	set	within	an	array
– Locality	of	access	within	server	or	rack

• High	failure	rate	à Reliability,	Availability
– Preventing	failures	is	effectively	impossible at	this	scale
– Cope	with	failures	gracefully	by	designing	the	system	as	a	
whole

• Varying	workloads	à Availability
– Scale	up	and	down	gracefully

• More	challenging	than	software	for	single	computers!

16



Power	Usage	Effectiveness
• Energy	efficiency
– Primary	concern	in	the	design	of	WSC
– Important	component	of	the	total	cost	of	ownership

• Power	Usage	Effectiveness	(PUE):

– A	power	efficiency	measure	for	WSC
– Not	considering	efficiency	of	servers,	networking
– Perfection	=	1.0
– Google	WSC’s	PUE	=	1.2

• Getting	pretty	close	to	Amdahl's	law	limit 17

Total	Building	Power
IT	equipment	Power



PUE	in	the	Wild	(2007)

18



19



Load	Profile	of	WSCs

• Average	CPU	utilization	of	5,000	Google	servers,	6	month	period
• Servers	rarely	idle	or	fully	utilized,	operating	most	of	the	time	at	

10%	to	50%	of	their	maximum	utilization
20



Energy-Proportional	Computing:	
Design	Goal	of	WSC

• Energy	=	Power	x	Time,	Efficiency	=	Computation	/	Energy
• Desire:

– Consume	almost	no	power	when	idle	(“Doing	nothing	well”)
– Gradually	consume	more	power	as	the	activity	level	increases

21



Cause	of	Poor	Energy	Proportionality

22

• CPU:	50%	at	peek,	30%	at	idle
• DRAM,	disks,	networking:	70%	at	idle!

– Because	they	are	never	really	idle	unless	they	are	powered	off!
• Need	to	improve	the	energy	efficiency	of	peripherals



Clicker/Peer	Instruction:
Which	Statement	is	True

• A:	Idle	servers	consume	almost	no	power.

• B:	Disks	will	fail	once	in	20	years,	so	failure	is	not	a	
problem	of	WSC.

• C:	The	search	requests	of	the	same	keyword	from	
different	users	are	dependent.

• D:	More	than	half	of	the	power	of	WSCs	goes	into	
cooling.

• E:	WSCs	contain	many	copies	of	data.
23



Administrivia
• Reminder	that	Project	4	is	out…

24



Agenda

• Warehouse	Scale	Computing

• Administrivia &	Clickers/Peer	Instructions

• Request-level	Parallelism
e.g.	Web	search

25



Request-Level	Parallelism	(RLP)
• Hundreds	of	thousands	of	requests	per	sec.
– Popular	Internet	services	like	web	search,	social	
networking,	…

– Such	requests	are	largely	independent
• Often	involve	read-mostly	databases
• Rarely	involve	read-write	sharing	or	synchronization	
across	requests

• Computation	easily	partitioned	across	different	
requests	and	even	within	a	request	

26



Google	Query-Serving	Architecture

27



Anatomy	of	a	Web	Search

28



Anatomy	of	a	Web	Search	(1/3)
• Google	“cats”
– Direct	request	to	“closest”	Google	WSC

• Handled	by	DNS

– Front-end	load	balancer	directs	request	to	one	of	many	
arrays	(cluster	of	servers)	within	WSC
• One	of	potentially	many	load	balancers

– Within	array,	select	one	of	many	Goggle	Web	Servers	(GWS)	
to	handle	the	request	and	compose	the	response	pages

– GWS	communicates	with	Index	Servers	to	find	documents	
that	contains	the	search	word,	“cats”
• Index	servers	keep	index	in	RAM,	not	on	disk

– Return	document	list	with	associated	relevance	score 29



Anatomy	of	a	Web	Search	(2/3)
• In	parallel,
– Ad	system:	run	ad	auction	for	bidders	on	search	terms

• Yes,	you	are	being	bought	and	sold	in	a	realtime auction	all	over	
the	web

• Page	ads	are	worse	than	search	ads

• Use	docids (Document	IDs)	to	access	indexed	documents
• Compose	the	page
– Result	document	extracts	(with	keyword	in	context)	
ordered	by	relevance	score

– Sponsored	links	(along	the	top)	and	advertisements	(along	
the	sides)

30



Anatomy	of	a	Web	Search	(3/3)
• Implementation	strategy
– Randomly	distribute	the	entries

– Make	many	copies	of	data	(a.k.a.	“replicas”)

– Load	balance	requests	across	replicas

• Redundant	copies	of	indices	and	documents

– Breaks	up	search	hot	spots,	e.g.	“Taylor	Swift”

– Increases	opportunities	for	request-level	parallelism

– Makes	the	system	more	tolerant	of	failures

31



Summary
• Warehouse	Scale	Computers
– New	class	of	computers
– Scalability,	energy	efficiency,	high	failure	rate

• Request-level	parallelism	
e.g.	Web	Search

• Data-level	parallelism	on	a	large	dataset
– A	gazillion	VMs	for	different	people

– MapReduce
– Hadoop,	Spark

32


