
CS	61C:	
Great	Ideas	in	Computer	Architecture

Performance
Iron	Law,	Amdahl’s	Law

Instructors:
Nicholas	Weaver&	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/



New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
2

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

How	do
we	know?



What	is	Performance?

• Latency	(or	response	time	or	execution	time)
– Time	to	complete	one	task

• Bandwidth	(or	throughput)
– Tasks	completed	per	unit	time
• If	you	have	sufficient	independent	tasks,	you	can	always	
throw	more	money	at	the	problem:
Throughput/$	often	a	more	important	metric	than	just	
throughput

3



Cloud	Performance:
Why	Application	Latency	Matters

• Key	figure	of	merit:	application	responsiveness
– Longer	the	delay,	the	fewer	the	user	clicks,	the	less	the	
user	happiness,	and	the	lower	the	revenue	per	user

4



Defining	CPU	Performance
• What	does	it	mean	to	say	
X	is	faster	than	Y?

• Ferrari	vs.	School	Bus?
• 2013	Ferrari	599	GTB	
– 2	passengers,	quarter	mile	in	10	secs

• 2013	Type	D	school	bus
– 50	passengers,	quarter	mile	in	20	secs

• Response	Time (Latency):	e.g.,	time	to	travel	¼	mile
• Throughput (Bandwidth):	 e.g.,	passenger-mi		in	1	hour

5



Defining	Relative	CPU	Performance
• PerformanceX =	1/Program	Execution	TimeX
• PerformanceX >	PerformanceY =>
1/Execution	TimeX>	1/Execution	Timey	=>
Execution	TimeY >	Execution	TimeX

• Computer	X	is	N	times	faster	than	Computer	Y
PerformanceX /	PerformanceY =	N	or
Execution	TimeY /	Execution	TimeX=	N

• Bus	to	Ferrari	performance:
– Program:	Transfer	1000	passengers	for	1	mile
– Bus:	3,200	sec,	Ferrari:	40,000	sec

6



Measuring	CPU	Performance

• Computers	use	a	clock	to	determine	when	
events	takes	place	within	hardware

• Clock	cycles: discrete	time	intervals
– aka	clocks,	cycles,	clock	periods,	clock	ticks	

• Clock	rate	or	clock	frequency: clock	cycles	per	
second	(inverse	of	clock	cycle	time)

• 3	GigaHertz clock	rate	
=>	clock	cycle	time	=	1/(3x109)	seconds	

clock	cycle	time	=	333	picoseconds	(ps)

7



CPU	Performance	Factors

• To	distinguish	between	processor	time	and	I/O,	
CPU	time	is	time	spent	in	processor

• CPU Time/Program
= Clock Cycles/Program 

x Clock Cycle Time

• Or	
CPU Time/Program
= Clock Cycles/Program ÷ Clock Rate

8



Iron	Law	of	Performance
by	Emer and	Clark

• A program	executes	instructions
• CPU Time/Program

= Clock Cycles/Program x Clock Cycle Time
= Instructions/Program 

x Average Clock Cycles/Instruction 
x Clock Cycle Time

• 1st term	called	Instruction	Count
• 2nd term	abbreviated	CPI	for	average	
Clock	Cycles	Per	Instruction	

• 3rd	term	is	1	/	Clock	rate

9



Restating	Performance	Equation
• Time	=	 Seconds

Program
Instructions Clock	cycles Seconds
Program Instruction Clock	Cycle

10

××=



What	Affects	Each	Component?	
A)Instruction	Count,	B)CPI,	C)Clock	Rate

Affects	What?
(click in	letter	of	component	
not	affected)

Algorithm

Programming	
Language
Compiler

Instruction	Set Architecture
11



What	Affects	Each	Component?	
Instruction	Count,	CPI,	Clock	Rate

Affects	What?
Algorithm Instruction	Count,

CPI
Programming	
Language

Instruction	Count,
CPI

Compiler Instruction	Count,
CPI

Instruction	Set
Architecture

Instruction	Count,
Clock	Rate,	CPI

12



Clickers

• Which	computer	has	the	highest	performance	
for	a	given	program?

13

Computer Clock
frequency

Clock cycles	per	
instruction

#instructions	
per	program

A 1GHz 2 1000

B 2GHz 5 800

C 500MHz 1.25 400

D 5GHz 10 2000



Workload	and	Benchmark

• Workload: Set	of	programs	run	on	a	computer	
– Actual	collection	of	applications	run	or	made	from	
real	programs	to	approximate	such	a	mix	

– Specifies	programs,	inputs,	and	relative	frequencies
• Benchmark:	Program	selected	for	use	in	
comparing	computer	performance
– Benchmarks	form	a	workload
– Usually	standardized	so	that	many	use	them

14



SPEC	
(System	Performance	Evaluation	Cooperative)
• Computer	Vendor	cooperative	for	
benchmarks,	started	in	1989

• SPECCPU2006
– 12	Integer	Programs
– 17	Floating-Point	Programs

• Often	turn	into	number	where	bigger	is	faster
• SPECratio:	reference	execution	time	on	old	
reference	computer	divide	by	execution	time	
on	new	computer	to	get	an	effective	speed-up

15



SPECINT2006	on	AMD	Barcelona
Description

Instruc-
tion

Count (B)
CPI

Clock 
cycle 

time (ps)

Execu-
tion

Time (s)

Refer-
ence

Time (s)

SPEC-
ratio

Interpreted string 
processing 2,118 0.75 400 637 9,770 15.3
Block-sorting compression 2,389 0.85 400 817 9,650 11.8
GNU C compiler 1,050 1.72 400 724 8,050 11.1
Combinatorial 
optimization 336 10.0 400 1,345 9,120 6.8
Go game 1,658 1.09 400 721 10,490 14.6
Search gene sequence 2,783 0.80 400 890 9,330 10.5
Chess game 2,176 0.96 400 837 12,100 14.5
Quantum computer 
simulation 1,623 1.61 400 1,047 20,720 19.8
Video compression 3,102 0.80 400 993 22,130 22.3
Discrete event simulation 
library 587 2.94 400 690 6,250 9.1
Games/path finding 1,082 1.79 400 773 7,020 9.1
XML parsing 1,058 2.70 400 1,143 6,900 6.016



17

Summarizing	Performance	…

Clickers:	Which	system	is	faster?

System Rate	(Task	1) Rate	(Task	2)

A 10 20

B 20 10

A:	System	A
B:	System	B
C:	Same	performance
D:	Unanswerable	question!



18

… Depends	Who’s	Selling
System Rate	(Task	1) Rate	(Task	2)

A 10 20

B 20 10

Average

15

15
Average	throughput

System Rate	(Task	1) Rate	(Task	2)

A 0.50 2.00

B 1.00 1.00

Average

1.25

1.00
Throughput	relative	to	B

System Rate	(Task	1) Rate	(Task	2)

A 1.00 1.00

B 2.00 0.50

Average

1.00

1.25
Throughput	relative	to	A



Summarizing	SPEC	Performance

• Varies	from	6x	to	22x	faster	than	reference	
computer

• Geometric	mean	of	ratios:	
N-th root	of	product	
of	N	ratios
– Geometric	Mean	gives	same	relative	answer	no	
matter	what	computer	is	used	as	reference

• Geometric	Mean	for	Barcelona	is	11.7

19



Administrivia

• Midterm	2	in	the	evening	next	Monday
• Project	2.1	grades	in

20



Big	Idea:	Amdahl’s	(Heartbreaking)	Law
• Speedup	due	to	enhancement	E	is

Speedup	w/	E	=	 ----------------------
Exec	time	w/o	E
Exec	time	w/	E	

• Suppose	that	enhancement	E	accelerates	a	fraction	F			(F	<1)	
of	the	task	by	a	factor	S	(S>1)	and	the	remainder	of	the	task	is	
unaffected

Execution	Time	w/	E		=

Speedup	w/	E		=
21

Execution	Time	w/o	E		´[	(1-F)	+	F/S]	

1	/	[	(1-F)	+	F/S	]



Big	Idea:	Amdahl’s	Law

22

Speedup		=																							1
(1	- F)			+			F

SNon-speed-up	part Speed-up	part

1
0.5	+	0.5

2

1
0.5	+	0.25

= = 1.33

Example:	the	execution	time	of	half	of	the	program	can	
be	accelerated	by	a	factor	of	2.
What	is	the	program	speed-up	overall?



Example	#1:	Amdahl’s	Law

• Consider	an	enhancement	which	runs	20	times	faster	but	
which	is	only	usable	25%	of	the	time

Speedup	w/	E		=		1/(.75	+	.25/20)		=		1.31

• What	if	its	usable	only	15%	of	the	time?
Speedup	w/	E		=		1/(.85	+	.15/20)		=		1.17

• Amdahl’s	Law	tells	us	that	to	achieve	linear	speedup	with	
100	processors,	none	of	the	original	computation	can	be	
scalar!

• To	get	a	speedup	of	90	from	100	processors,	the	
percentage	of	the	original	program	that	could	be	scalar	
would	have	to	be	0.1%	or	less

Speedup	w/	E		=		1/(.001	+	.999/100)		=		90.99
23

Speedup	w/	E	=			1	/ [	(1-F)	+	F/S	]



24

If	the	portion	of
the	program	that
can	be	parallelized
is	small,	then	the
speedup	is	limited

The	non-parallel
portion	limits
the	performance



Strong	and	Weak	Scaling
• To	get	good	speedup	on	a	parallel	processor	while	
keeping	the	problem	size	fixed	is	harder	than	getting	
good	speedup	by	increasing	the	size	of	the	problem.
– Strong	scaling:	when	speedup	can	be	achieved	on	a	
parallel	processor	without	increasing	the	size	of	the	
problem

– Weak	scaling:	when	speedup	is	achieved	on	a	parallel	
processor	by	increasing	the	size	of	the	problem	
proportionally	to	the	increase	in	the	number	of	processors

• Load	balancing	is	another	important	factor:	every	
processor	doing	same	amount	of	work		
– Just	one	unit	with	twice	the	load	of	others	cuts	speedup	
almost	in	half

25



Clickers/Peer	Instruction

26

Suppose	a	program	spends	80%	of	its	time	in	a	square	root	
routine.	How	much	must	you	speedup	square	root	to	make	
the	program	run	5	times	faster?

A:	5
B:	16
C:	20
D:	100
E:	None	of	the	above

Speedup	w/	E	=			1	/ [	(1-F)	+	F/S	]



And	In	Conclusion,	…

27

• Time	(seconds/program)	is	measure	of	performance	
Instructions Clock	cycles Seconds
Program Instruction Clock	Cycle

• Floating-point	representations	hold	approximations	
of	real	numbers		in	a	finite	number	of	bits

××=


