
CS	61C:	
Great	Ideas	in	Computer	Architecture

Floating	Point	Arithmetic

Instructors:
Vladimir	Stojanovic	&	Nicholas	Weaver
http://inst.eecs.berkeley.edu/~cs61c/

New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
2

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

How	do
we	know?

CS61C (3) Garcia, Fall 2014 © UCB

Review of Numbers

• Computers are made to deal with
numbers

• What can we represent in N bits?
• 2N things, and no more! They could be…
• Unsigned integers:

0 to 2N - 1
(for N=32, 2N–1 = 4,294,967,295)
• Signed Integers (Two’s Complement)

-2(N-1) to 2(N-1) - 1
(for N=32, 2(N-1) = 2,147,483,648)

CS61C (4) Garcia, Fall 2014 © UCB

What about other numbers?
1. Very large numbers? (seconds/millennium)

⇒ 31,556,926,000ten (3.155692610 x 1010)

2. Very small numbers? (Bohr radius)
⇒ 0.0000000000529177ten (5.2917710 x 10-11)

3. Numbers with both integer & fractional parts?
⇒ 1.5

First consider #3.

…our solution will also help with #1 and #2.

CS61C (5) Garcia, Fall 2014 © UCB

Representation of Fractions
“Binary Point” like decimal point signifies
boundary between integer and fractional parts:

xx.yyyy
21

20 2-1 2-2 2-3 2-4

Example 6-bit
representation:

10.1010two = 1x21 + 1x2-1 + 1x2-3 = 2.625ten

If we assume “fixed binary point”, range of 6-bit
representations with this format:

0 to 3.9375 (almost 4)

CS61C (6) Garcia, Fall 2014 © UCB

Fractional Powers of 2

0 1.0 1
1 0.5 1/2
2 0.25 1/4
3 0.125 1/8
4 0.0625 1/16
5 0.03125 1/32
6 0.015625
7 0.0078125
8 0.00390625
9 0.001953125
10 0.0009765625
11 0.00048828125
12 0.000244140625
13 0.0001220703125
14 0.00006103515625
15 0.000030517578125

i 2-i

CS61C (7) Garcia, Fall 2014 © UCB

Representation of Fractions with Fixed Pt.
What about addition and multiplication?

Addition is
straightforward:

01.100 1.5ten
+ 00.100 0.5ten
10.000 2.0ten

Multiplication a bit more complex:

01.100 1.5ten
00.100 0.5ten
00 000
000 00

0110 0
00000

00000
0000110000

Where’s the answer, 0.11? (need to remember where point is)

CS61C (8) Garcia, Fall 2014 © UCB

Representation of Fractions
So far, in our examples we used a “fixed” binary point.
What we really want is to “float” the binary point. Why?

Floating binary point most effective use of our limited bits
(and thus more accuracy in our number representation):

… 000000.001010100000…

Any other solution would lose accuracy!

example: put 0.1640625ten into binary. Represent
with 5-bits choosing where to put the binary point.

Store these bits and keep track of the binary
point 2 places to the left of the MSB

With floating-point rep., each numeral carries an exponent
field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very
large and small numbers can be represented.

CS61C (9) Garcia, Fall 2014 © UCB

Scientific Notation (in Decimal)

6.02ten x 1023

radix (base)decimal point

mantissa exponent

• Normalized form: no leading 0s
(exactly one digit to left of decimal point)

• Alternatives to representing 1/1,000,000,000
• Normalized: 1.0 x 10-9

• Not normalized: 0.1 x 10-8,10.0 x 10-10

CS61C (10) Garcia, Fall 2014 © UCB

Scientific Notation (in Binary)

1.01two x 2-1

radix (base)“binary point”

exponent

• Computer arithmetic that supports it called
floating point, because it represents
numbers where the binary point is not
fixed, as it is for integers

• Declare such variable in C as float
§ double for double precision.

mantissa

CS61C (11) Garcia, Fall 2014 © UCB

Floating-Point Representation (1/2)
• Normal format: +1.xxx…xtwo*2yyy…ytwo

• Multiple of Word Size (32 bits)

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• S represents Sign

Exponent represents y’s
Significand represents x’s

• Represent numbers as small as
2.0ten x 10-38 to as large as 2.0ten x 1038

CS61C (12) Garcia, Fall 2014 © UCB

Floating-Point Representation (2/2)
• What if result too large?

(> 2.0x1038 , < -2.0x1038)
• Overflow! ⇒ Exponent larger than represented in 8-

bit Exponent field

• What if result too small?
(>0 & < 2.0x10-38 , <0 & > -2.0x10-38)
• Underflow! ⇒ Negative exponent larger than

represented in 8-bit Exponent field

• What would help reduce chances of overflow
and/or underflow?

0 2x10-38 2x10381-1 -2x10-38-2x1038

underflow overflowoverflow

CS61C (13) Garcia, Fall 2014 © UCB

IEEE 754 Floating-Point Standard (1/3)
Single Precision (Double Precision similar):

• Sign bit: 1 means negative
0 means positive

• Significand in sign-magnitude format (not 2’s
complement)

• To pack more bits, leading 1 implicit for
normalized numbers

• 1 + 23 bits single, 1 + 52 bits double
• always true: 0 < Significand < 1

(for normalized numbers)

• Note: 0 has no leading 1, so reserve exponent
value 0 just for number 0

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

CS61C (14) Garcia, Fall 2014 © UCB

IEEE 754 Floating Point Standard (2/3)

• IEEE 754 uses “biased exponent”
representation
• Designers wanted FP numbers to be used even
if no FP hardware; e.g., sort records with FP
numbers using integer compares

• Wanted bigger (integer) exponent field to
represent bigger numbers

• 2’s complement poses a problem (because
negative numbers look bigger)
§ Use just magnitude and offset by half the range

CS61C (15) Garcia, Fall 2014 © UCB

IEEE 754 Floating Point Standard (3/3)
• Called Biased Notation, where bias is
number subtracted to get final number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get
actual value for exponent

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

CS61C (16) Garcia, Fall 2014 © UCB

“Father” of the Floating point standard

IEEE Standard 754 for
Binary Floating-Point

Arithmetic.

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Prof. Kahan
1989

ACM Turing
Award Winner!

Clickers
• Guess	this	Floating	Point	number:
1	1000	0000		1000	0000	0000	0000	0000	000

A:	-1x	2128

B:	+1x	2-128

C:	-1x	21

D:	+1.5x	2-1

E:	-1.5x	21

17

Administrivia

• Project	3-2	extended	until	03/20	@	23:59:59

• Guerrilla	Session:	Caches/	Proj 3-2	OH
– Sat	3/19	1	- 3	PM	@	521	Cory

18

CS61C (19) Garcia, Fall 2014 © UCB

Representation for ± ∞

• In FP, divide by 0 should produce ± ∞,
not overflow.

• Why?
• OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison

• IEEE 754 represents ± ∞
• Most positive exponent reserved for ∞
• Significands all zeroes

CS61C (20) Garcia, Fall 2014 © UCB

Representation for 0
• Represent 0?

• exponent all zeroes
• significand all zeroes
• What about sign? Both cases valid
+0: 0 00000000 00000000000000000000000

-0: 1 00000000 00000000000000000000000

CS61C (21) Garcia, Fall 2014 © UCB

Special Numbers
• What have we defined so far?

(Single Precision)
Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero ???

• Professor Kahan had clever ideas:
• Wanted to use Exp=0,255 & Sig!=0

CS61C (22) Garcia, Fall 2014 © UCB

Representation for Not a Number

• What do I get if I calculate
sqrt(-4.0)or 0/0?

• If ∞ not an error, these shouldn’t be either
• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

• Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN, X) = NaN
• Can use the significand to identify which!

CS61C (23) Garcia, Fall 2014 © UCB

Representation for Denorms (1/2)
• Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
a = 1.0… two * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 two * 2-126

= (1 + 0.00…1two) * 2-126

= (1 + 2-23) * 2-126

= 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0 +-

Gaps!

Normalization
and implicit 1
is to blame!

CS61C (24) Garcia, Fall 2014 © UCB

Representation for Denorms (2/2)

• Solution:
• We still haven’t used Exponent = 0,
Significand nonzero

• DEnormalized number: no (implied)
leading 1, implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-

CS61C (25) Garcia, Fall 2014 © UCB

Special Numbers Summary

• Reserve exponents, significands:
Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

CS61C (26) Garcia, Fall 2014 © UCB

Conclusion
• Floating Point lets us:

• Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.

• Store approximate values for very large and very small #s.

• IEEE 754 Floating-Point Standard is most widely
accepted attempt to standardize interpretation of such
numbers (Every desktop or server computer sold
since ~1997 follows these conventions)

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Exponent tells Significand how much
(2i) to count by (…, 1/4, 1/2, 1, 2, …)

Can
store
NaN,
± ∞

www.h-schmidt.net/FloatApplet/IEEE754.html

