
CS	61C:	Great	Ideas	in	Computer	
Architecture
Caches	Part	3

Instructors:
Nicholas	Weaver	&	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c

You	Are	Here!

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Main	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Today’s
Lecture

2

CPU-Cache	Interaction
(5-stage	pipeline)

3

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

bubble

hit?
PCen

Decode,
Register
Fetch

wdata
R

addr

wdata

rdata
Primary
Data	
Cache

we
A

B

YYALU

MD1 MD2

Cache	Refill	Data	from	Lower	Levels	of	
Memory	Hierarchy

hit?

Stall	entire	
CPU	on	data	
cache	miss

To	Memory	Control

M
E

Improving	Cache	Performance

• Reduce	the	time	to	hit	in	the	cache
– E.g.,	Smaller	cache

• Reduce	the	miss	rate
– E.g.,	Bigger	cache
Longer	cache	lines	(somewhat)

• Reduce	the	miss	penalty
– E.g.,	Use	multiple	cache	levels

4

AMAT	=		Time	for	a	hit		+		Miss	rate	x	Miss	penalty

Cache	Design	Space

• Several	interacting	dimensions
– Cache	size
– Block	size
– Associativity
– Replacement	policy
– Write-through	vs.	write-back
– Write	allocation

• Optimal	choice	is	a	compromise
– Depends	on	access	characteristics

• Workload
• Use	(I-cache,	D-cache)

– Depends	on	technology	/	cost
• Simplicity	often	wins

Associativity

Cache	Size

Block	Size

Bad

Good

Less More

Factor	A Factor	B

5

Computer	architects	expend	considerable	effort	optimizing	organization	of	cache	
hierarchy	– big	impact	on	performance	and	power!

Primary	Cache	Parameters

• Block	size
– how	many	bytes	of	data	in	each	cache	entry?

• Associativity
– how	many	ways	in	each	set?
– Direct-mapped	=>	Associativity	=	1
– Set-associative	=>	1	<	Associativity	<	#Entries
– Fully	associative	=>	Associativity	=	#Entries

• Capacity	(bytes)	=	Total	#Entries	*	Block	size
• #Entries	= #Sets	*	Associativity

6

Clickers/Peer	Instruction:
For	fixed	capacity	and	fixed	block	size,	how	
does	increasing	associativity	effect	AMAT?

7

Increasing	Associativity?
• Hit	time	as	associativity	increases?
– Increases,	with	large	step	from	direct-mapped	to	>=2	ways,	
as	now	need	to	mux	correct	way	to	processor

– Smaller	increases	in	hit	time	for	further	increases	in	
associativity

• Miss	rate	as	associativity	increases?
– Goes	down	due	to	reduced	conflict	misses,	but	most	gain	is	
from	1->2->4-way	with	limited	benefit	from	higher	
associativities

• Miss	penalty	as	associativity	increases?
– Unchanged,	replacement	policy	runs	in	parallel	with	
fetching	missing	line	from	memory

8

Increasing	#Entries?
• Hit	time	as	#entries	increases?
– Increases,	since	reading	tags	and	data	from	larger	
memory	structures

• Miss	rate	as	#entries	increases?
– Goes	down	due	to	reduced	capacity	and	conflict	
misses

– Architects	rule	of	thumb:	miss	rate	drops	~2x	for	every	
~4x	increase	in	capacity	(only	a	gross	approximation)

• Miss	penalty	as	#entries	increases?
– Unchanged

9

At	some	point,	increase	in	hit	time	for	a	larger	cache	may	overcome	
the	improvement	in	hit	rate,	yielding	a	decrease	in	performance

Clickers:	Impact	of	larger	blocks	on	
AMAT

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	larger	blocks	on	each	
component	of	AMAT:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Hit	Time?
• Miss	Rate?
• Miss	Penalty?

10

Increasing	Block	Size?
• Hit	time	as	block	size	increases?
– Hit	time	unchanged,	but	might	be	slight	hit-time	
reduction	as	number	of	tags	is	reduced,	so	faster	to	
access	memory	holding	tags

• Miss	rate	as	block	size	increases?
– Goes	down	at	first	due	to	spatial	locality,	then	
increases	due	to	increased	conflict	misses	due	to	
fewer	blocks	in	cache

• Miss	penalty	as	block	size	increases?
– Rises	with	longer	block	size,	but	with	fixed	constant	
initial	latency	that	is	amortized	over	whole	block

11

How	to	Reduce	Miss	Penalty?

• Could	there	be	locality	on	misses	from	a	
cache?

• Use	multiple	cache	levels!
• With	Moore’s	Law,	more	room	on	die	for	
bigger	L1	caches	and	for	second-level	(L2)	
cache

• And	in	some	cases	even	an	L3	cache!
• IBM	mainframes	have	~1GB	L4	cache	off-chip.

12

Review:	Memory	Hierarchy
Processor

Size	of	memory	at	each	level

Increasing
distance	from
processor,
decreasing		
speed

Level	1

Level	2

Level	n

Level	3

.	.	.

Inner

Outer

Levels	in	
memory	
hierarchy

As	we	move	to outer	levels	the	latency	goes	up
and	price	per	bit	goes	down.

13

IBM	z13	Memory	Hierarchy

14

��������QP�1H[W�*HQHUDWLRQ�,%0�6\VWHP�]�0LFURSURFHVVRU
�������,(((�
,QWHUQDWLRQDO�6ROLG�6WDWH�&LUFXLWV�&RQIHUHQFH �� RI���

&DFKH�+LHUDUFK\

6KDUHG�/�
����0%�H'5$0
���6&�FKLSV��
����0%�HDFK�

6KDUHG�/�
���0%�H'5$0

,�/�
��0%�
65$0

,�/�
��.�
65$0

'�/�
��.�
65$0

[�

[�

��QP�'HVLJQ��0&0�

'�/�
��0%�
65$0

FR
UH
V

&
38

�F
KL
SV

6KDUHG�/�
����0%�H'5$0

���6&�FKLS�

6KDUHG�/�
���0%�H'5$0

,�/�
� 0%�
H'5$0

,�/�
��.�
65$0

'�/�
���.�
65$0

[�

[�

��QP�'HVLJQ��1RGH�

'�/�
� 0%�
H'5$0

FR
UH
V

&
38

�F
KL
SV

��������QP�1H[W�*HQHUDWLRQ�,%0�6\VWHP�]�0LFURSURFHVVRU
�������,(((�
,QWHUQDWLRQDO�6ROLG�6WDWH�&LUFXLWV�&RQIHUHQFH �� RI���

&3�&KLS�2YHUYLHZ

&RUH�

&RUH�

&RUH�

&RUH�

&RUH�

&RUH�

&RUH�&RUH�/�

/�
/�

/�

/��/RJLF�
/�',5

/��/RJLF�
/�',5

3&,(� 3%8 3%8 3&,(�*;

;%
8
6�
'
ULY

HU
V�
	
�5
HF
HL
YH
UV

;%
8
6�
'
ULY

HU
V�
	
�5
HF
HL
YH
UV

0&�'UYUV 0&�5FYUV0&8� ���%�
7UDQVLVWRUV

� ���PP� DUHD

� a��.�&�V

� ��*+]

� ��FRUHV��
/��FDFKH�	�
GLUHFWRU\�
0&8��,2V

��������QP�1H[W�*HQHUDWLRQ�,%0�6\VWHP�]�0LFURSURFHVVRU
�������,(((�
,QWHUQDWLRQDO�6ROLG�6WDWH�&LUFXLWV�&RQIHUHQFH �� RI���

6&�&KLS�2YHUYLHZ
� ���%�
7UDQVLVWRUV

� ���PP� DUHD

� a��.�&�V

� ����*+]

� /��&DFKH��
/��'LUHFWRU\��
603�FRQWURO�	�
FRKHUHQF\�
ORJLF���,2V

H'5$0 &DFKH

H'5$0 &DFKH

/��
'DWD
ELW�
VWDFN

/��'LU
H'5$0
��ORJLF

/��'LU
H'5$0
��ORJLF

/��'LU
H'5$0
��ORJLF

/��'LU
H'5$0
��ORJLF

$�%XV�'59

$�%XV�'5�9

$�%XV�5&9

$�%XV�5&9

;�
%X

V�
'5

9
;�
%X

V�
'5

9

;�
%X

V�
'5

9
;�
%
XV
�5
&
9

;�
%
XV
�5
&
9

;�
%
XV
�5
&
9

6�
%
XV
�'
59

6�
%
XV
�5
&
9

7HVW

/��
'DWD
ELW�
VWDFN

3/16/16 Fall	2013	-- Lecture	#13 15

L1	Cache:	32KB	I$,	32KB	D$
L2	Cache:	256	KB
L3	Cache:	4	MB

24%	of	CPU	access	miss	in	L1

15%	also miss	in	L2

4%	also miss	in	L2

Local	vs.	Global	Miss	Rates

• Global	miss	rate	– the	fraction	of	references	that	
miss	some	level	of	a	multilevel	cache
– misses	in	this	cache	divided	by	the	total	number	of	
memory	accesses	generated	by	the	CPU

• Local	miss	rate	– the	fraction	of	references	to	
one	level	of	a	cache	that	miss

• Local	Miss	rate	L2$	=	L2$	Misses	/	L1$	Misses																																																										
=	L2$	Misses	/	total_L2_accesses

• L2$	local	miss	rate	>>	than	the	global	miss	rate

16

Clickers/Peer	Instruction
• Overall,	what	are	L2	and	L3	local	miss	rates?

17

A:	L2	>	50%,	L3	>	50%
B:	L2	~	50%,	L3	<	50%
C:	L2	~	50%,	L3	~	50%
D:	L2	<	50%,	L3	<	50%
E:	L2	>	50%,	L3	~50%

Local	vs.	Global	Miss	Rates
• Local	miss	rate	– the	fraction	of	references	to	one	
level	of	a	cache	that	miss

• Local	Miss	rate	L2$	=	$L2	Misses	/	L1$	Misses
• Global	miss	rate	– the	fraction	of	references	that	
miss	in	all	levels	of	a	multilevel	cache
• L2$	local	miss	rate	>>	than	the	global	miss	rate

• Global	Miss	rate	=	L2$	Misses	/	Total	Accesses
=	(L2$	Misses	/	L1$	Misses)	× (L1$	Misses	/	Total	Accesses)
=	Local	Miss	rate	L2$	× Local	Miss	rate	L1$

• AMAT	=		Time	for	a	hit		+		Miss	rate	× Miss	penalty
• For	2-level	cache	system:

AMAT	=		Time	for	a	L1$	hit		+	Miss	rate	L1$	×
(Time	for	a	L2$	hit	+	(local)	Miss	rate	L2$	× L2$	Miss	penalty)

18

19

CPI/Miss	Rates/DRAM	Access
SpecInt2006

3/16/16 Fall	2013	-- Lecture	#12 20

Instructions	and	DataData	Only Data	Only

In	Conclusion,	Cache	Design	Space
• Several	interacting	dimensions

– Cache	size
– Block	size
– Associativity
– Replacement	policy
– Write-through	vs.	write-back
– Write-allocation

• Optimal	choice	is	a	compromise
– Depends	on	access	characteristics

• Workload
• Use	(I-cache,	D-cache)

– Depends	on	technology	/	cost
• Simplicity	often	wins

Associativity

Cache	Size

Block	Size

Bad

Good

Less More

Factor	A Factor	B

21

More	Misses…
• We	have	Compulsory,	Capacity,	and	Conflict…
• We	also	have	Coherence

– Two	different	processor	may	share	memory...
• They	implement	cache	coherence so	that	both	processors	see	the	
same	shared	memory

• When	one	processor	writes	to	memory,	it	invalidates the	other	
processor's	cache	entry	for	that	memory

– Thus	if	both	processors	are	working	on	the	same	data…
• This	causes	Coherence	misses

• A	related	problem	can	occur	if	one	shared	cache	is	working	
on	two	unrelated problems
– You	get	additional	capacity	misses:	Can	happen	in	

"multithreaded"	(aka	'Intel	Hyperthreaded')	processor	cores

3/16/16 Fall	2013	-- Lecture	#22 22

Fun	Additional	Stuff:	Nick's	Caches

• Note:	These	won't	be	on	the	exam,	but	they	
are	interesting	asides
– Nick's	research	has	used	this	material	in	multiple	
ways

• Predictability	and	caches
–Why	its	bad
– Unpredictable	caches:	Permutation	caches	and	
location-associative	permutation	caches

3/16/16 Fall	2013	-- Lecture	#22 23

Predictability	and	Caches

• Caches	improve	performance	but…
– The	performance	improvement	depends	on	the	
input
• E.g.	conflict	misses	depend	on	input	patterns

• An	attacker	can	take	advantage	of	this
– Timing	of	operations	can	tell	something	about	the	
input

– Attacker	selected	inputs	can	degrade	performance

3/16/16 Fall	2013	-- Lecture	#22 24

Why	Timing	Matters

• Timing	enables	"side-channel"	attacks	on	
cryptography
– The	ability	to	know	some	detail	of	an	encryption	
system	based	on	how	long	operations	take
• Part	of	a	larger	class	of	side-channel	attacks

• It	is	a	fundamentally	hard	problem	to	build	
cryptographic	systems	that	don't	have	
sidechanels
– Modern	processors	make	this	even	harder

3/16/16 Fall	2013	-- Lecture	#22 25

Attacker	Selected	Input

• Alternatively,	if	the	attacker	can	select	the	
input…
– The	attacker	can	select	hard input:
E.G.	Traffic	that	causes	ping-ponging

• Nick's	problem:
– He	had	to	cache	IP	addresses	(32	bit	values)
• This	is	a	network	application	for	security

– He	only	wants	to	store	a	small	amount	of	
information
• On	chip	storage	expensive	(in	this	case,	on	an	FPGA)

3/16/16 Fall	2013	-- Lecture	#22 26

#1:	Permutation	Cache

• Traditionally,	you	would	hash	the	address
– With	a	"salt"	to	randomize	things
– But	this	requires	storing	the	whole	hash	value	or	
whole	IP	for	your	tag

• Instead	of	a	hash,	use	a	32b	keyed	permutation
– Aka	a	32b	block	cypher

• Now	you	can	use	a	conventional	tag/index	
approach
– Requires	only	storing	the	tag	->	space	mattered	in	this	
application

3/16/16 Fall	2013	-- Lecture	#22 27

#2:	Location	Associativity
• The	fabric	Nick	had	used	"dual-ported"	memories
– Like	your	register	file	on	your	processor	design:	two	
independent	read	ports

• Rather	than	using	set	associativity…
– Instead	do	two	different	permutations	(keys)	and	have	one	
of	two	possible	locations

• If	X,	Y,	and	Z	map	to	the	same	location	with	one	key...
– They	probably	do	not on	the	other	key:	fewer	conflict
misses

– Even	better,	can	probably	move a	value	to	further	reduce	
conflictmisses

3/16/16 Fall	2013	-- Lecture	#22 28

Simulation…

3/16/16 Fall	2013	-- Lecture	#22 29

