CS 61C: Great Ideas in Computer
Architecture
Caches Part 3

Instructors:
Nicholas Weaver & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c

You Are Herel

Software Hardware
Parallel Requests

Assigned to computer

Warehouse &
Scale §

e.g., Search “Katz” Computer §
Harness
Parallel Threads 5 . iiclism &
Assigned to core Achieve High
e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data = \

A : Functional
>1 data item @ one time by Ction Unit(s) Unit(s)
e.g., Add of 4 pairs c.)f w.ords = /,(O+,30 1+B}/K2+B 3+|3/

Hardware descriptions — =

Main Memory /’/ i

]

All gates @ one time

_ = Logic Gat
Programming Languages / OBIE Bates
2
=D

CPU-Cache Interaction

0x4 ”

:

v

PCen‘

(5-stage pipeline)

E
| M
A —
A vV we
bubble Decode, — v|-+—addr
u . : i
Register i A Egrtr;aryrdata
addr jnst D Fetch — —_ Cache
hit> »| wdata hit? |
Primary A A 1
Instruction MD1 MD?2
Cache:‘ Stall entire
l CPU on data
|| cache mi
To Memory Control /[i\

Cache Refill Data from Lower Levels of
Memory Hierarchy

Improving Cache Performance
AMAT = Time for a hit + Miss rate x Miss penalty

e Reduce the time to hit in the cache
— E.g., Smaller cache
e Reduce the miss rate

— E.g., Bigger cache
Longer cache lines (somewhat)

* Reduce the miss penalty

— E.g., Use multiple cache levels

Cache Design Space

Computer architects expend considerable effort optimizing organization of cache
hierarchy— big impact on performance and power!

e Several interacting dimensions
— Cachessize
— Block size
— Associativity
— Replacement policy
— Write-through vs. write-back
— Write allocation

e Optimal choice is a compromise

— Dependson access characteristics
* Workload
e Use (I-cache, D-cache)

— Dependson technology/ cost
e Simplicity often wins

Cache Size

A

Associativity

Block Size

Bad v

Good FactorA FactorB

Less More

Primary Cache Parameters

Block size

— how many bytes of data in each cache entry?
Associativity

— how many ways in each set?

— Direct-mapped => Associativity = 1

— Set-associative => 1 < Associativity < #Entries
— Fully associative => Associativity = #Entries

Capacity (bytes) = Total #Entries * Block size
#Entries = #Sets * Associativity

Clickers/Peer Instruction:
For fixed capacity and fixed block size, how
does increasing associativity effect AMAT?

A: Increases hit time, decreases miss rate
B: Decreases hit time, decreases miss rate
C: Increases hit time, increases miss rate

D: Decreases hit time, increases miss rate

Increasing Associativity?

* Hit time as associativity increases?

— Increases, with large step from direct-mapped to >=2 ways,
as now need to mux correct way to processor

— Smaller increases in hit time for further increases in
associativity

* Miss rate as associativity increases?

— Goes down due to reduced conflict misses, but most gain is
from 1->2->4-way with limited benefit from higher
associativities

* Miss penalty as associativity increases?

— Unchanged, replacement policy runs in parallel with
fetching missing line from memory

Increasing #Entries?

e Hittime as #entries increases?

— Increases, since reading tags and data from larger
memory structures

e Miss rate as #entries increases?

— Goes down due to reduced capacity and conflict
misses

— Architects rule of thumb: miss rate drops ~2x for every
~4x increase in capacity (only a gross approximation)

* Miss penalty as #entries increases?
— Unchanged

At some point, increase in hit time for a larger cache may overcome
the improvementin hit rate, yielding a decrease in performance

Clickers: Impact of larger blocks on
AMAT

For fixed total cache capacity and associativity,
what is effect of larger blocks on each
component of AMAT:

— A: Decrease, B: Unchanged, C: Increase
Hit Time?

Miss Rate?

Miss Penalty?

10

Increasing Block Size?

e Hit time as block size increases?

— Hit time unchanged, but might be slight hit-time
reduction as number of tags is reduced, so faster to
access memory holding tags

e Miss rate as block size increases?

— Goes down at first due to spatial locality, then
increases due to increased conflict misses due to
fewer blocks in cache

* Miss penalty as block size increases?

— Rises with longer block size, but with fixed constant
initial latency that is amortized over whole block

How to Reduce Miss Penalty?

Could there be locality on misses from a
cache?

Use multiple cache levels!

With Moore’s Law, more room on die for
bigger L1 caches and for second-level (L2)
cache

And in some cases even an L3 cache!
IBM mainframes have ~1GB L4 cache off-chip.

12

Review: Memory Hierarchy
Processor

Increasing
Inner distance from
. Lovel 1 processor,
Levels in decreasing
memory / Level 2 speed
hierarchy Level 3
Outer

Level n

Size of memory at each level
As we move to outer levels the latency goes up

and price per bit goes down.

IBM z13 Memory |erarchy

Shared L4
480 MB eDRAM
(1 SC chip)

i N E——
Shared L3

64 MB eDRAM
I |
Tz [D2 |)
2MB H 2 MB
eDRAM|[eDRAM| |, g

| |
L1 |[D-L1
96K || 128K

_ \SRAM SRAM)

X
w

CPU chips

KCO res

7L S AR o SRR ——

24% of CPU access miss in L1 — . L1 Data Miss Rate
L2 Data Miss Rate
Sl i A —#A— L3 Data Miss Rate
15% also miss in L2 —
A15% = - o« e e ...
L1 Cache: 32KB IS, 32KB DS
L2 Cache: 256 KB
10% L3 Cache: 4 MB
A R O AP
5% pr— 4% also miss in L2
0%

FIGURE 5.47 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running
the full integer SPECCPU2006 benchmarks.

Local vs. Global Miss Rates

Global miss rate — the fraction of references that
miss some level of a multilevel cache

— misses in this cache divided by the total number of
memory accesses generated by the CPU

Local miss rate — the fraction of referencesto
one level of a cache that miss

Local Miss rate L2S = L2S Misses / L1S Misses
= L2S Misses / total L2 accesses

L2S local miss rate >> than the global miss rate

16

25%

20%

15%

10% -

5% -

0% -

Clickers/Peer Instruction
 Overall, what are L2 and L3 local miss rates?

- A: L2 > 50%, L3 > 50% B
B: L2 ~ 50%, L3 < 50% 2 Data Miss Rate
1 C: L2~ 50%’ 13~50% —#— L3 Data Miss Rate
| D:12<50%, L3 <50% 5.

E: L2 >50%, L3 “50%

..

17

Local vs. Global Miss Rates

e [ocal miss rate — the fraction of references to one
level of a cache that miss

e Local Miss rate L2S = SL2 Misses / L1S Misses

* Global miss rate — the fraction of references that
miss in all levels of a multilevel cache
* L2S local miss rate >> than the global miss rate

e Global Miss rate = L2S Misses / Total Accesses
= (L2S Misses / L1S Misses) x (L1S Misses / Total Accesses)
= Local Miss rate L2S x Local Miss rate L1S

 AMAT = Time for a hit + Miss rate x Miss penalty
* For 2-level cache system:

AMAT = Time for a L1S hit + Miss rate L1S x
(Time for a L2S hit + (local) Miss rate L2S x L2S Miss penalty)

Characteristic

L1 cache organization

Intel Nehalem

Split instruction and data caches

AMD Opteron X4 (Barcelona)

Split instruction and data caches

L1 cache size

32 KB each for instructions/data per
core

64 KB each for instructions/data
per core

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, Write-allocate

Write-back, Write-allocate

L1 hit time (load-use)
cache organization

Not Available
Unified (Instruction and data) per core

3 clock cycles

Unified (instruction and data) per core

L2 cache size

256 KB (0.25 MB)

512 KB (0.5 MB)

L2 block size 64 bytes 64 bytes
L2 write policy Write-back, Write-allocate Write-back, Write-allocate
L2 hit time Not Available 9 clock cycles

L3 cache organization

Unified (instruction and data)

Unified (instruction and data)

L3 cache size

8192 KB (8 MB), shared

2048 KB (2 MB), shared

L3 block size 64 bytes 64 bytes
L3 write policy Write-back, Write-allocate Write-back, Write-allocate
L3 hit time Not Available 38 (?)clock cycles

19

CPl/Miss Rates/DRAM Access
Speclnt2006

Data Only

Data Only

Instructions and Data

L1 D cache L2 D cache DRAM
misses/1000 instr | misses/1000 instr | accesses/1000 instr

perl 0.75
bzip2 0.85 11.0 5.8 2.5
gee 1.72 24.3 13.4 14.8
mcf 10.00 106.8 88.0 88.5
go 1.09 4.5 1.4 1.7
hmmer 0.80 4.4 2.5 0.6
sjeng 0.96 1.9 0.6 0.8
libquantum 1.61 33.0 331 477
h264avc 0.80 8.8 1.6 0.2
omnetpp 2.94 30.9 27.7 29.8
astar 1.79 163 9.2 8.2
xalancbmk 2.70 38.0 15.8 11.4
Median 1.35 136 7.5 5.4

In Conclusion, Cache Design Space

* Several interacting dimensions Cache Size
— Cache size
— Block size
— Associativity
— Replacement policy
— Write-through vs. write-back
— Write-allocation

* Optimal choice is a compromise

— Dependson access characteristics Bad
* Workload
e Use (I-cache, D-cache)

— Dependson technology/ cost Good |FactorA Factor B
* Simplicity often wins Less More

Associativity

Block Size

21

More Misses...

* We have Compulsory, Capacity, and Conflict...

e \We also have Coherence

— Two differentprocessor may share memory...

* They implement cache coherence so that both processors see the
same shared memory

* When one processor writes to memory, it invalidates the other
processor's cache entry for that memory

— Thusif both processors are workingon the same data...
* This causes Coherence misses

* Arelated problem can occur if one shared cache is working
on two unrelated problems

— You get additional capacity misses: Can happenin
"multithreaded" (aka 'Intel Hyperthreaded') processorcores

Fun Additional Stuff: Nick's Caches

* Note: These won't be on the exam, but they
are interesting asides

— Nick's research has used this material in multiple
ways

* Predictability and caches

— Why its bad

— Unpredictable caches: Permutation caches and
location-associative permutation caches

3/16/16 Fall 2013 -- Lecture #22 23

Predictability and Caches

e Caches improve performance but...

— The performance improvement depends on the
input
e E.g. conflict misses depend on input patterns

* An attacker can take advantage of this

— Timing of operations can tell something about the
Input

— Attacker selected inputs can degrade performance

3/16/16 Fall 2013 -- Lecture #22 24

Why Timing Matters

* Timing enables "side-channel" attacks on
cryptography

— The ability to know some detail of an encryption
system based on how long operations take

* Part of a larger class of side-channel attacks
* |tis a fundamentally hard problem to build
cryptographic systems that don't have
sidechanels

— Modern processors make this even harder

Attacker Selected Input

e Alternatively, if the attacker can select the
Input...

— The attacker can select hard input:
E.G. Traffic that causes ping-ponging

* Nick's problem:

— He had to cache IP addresses (32 bit values)
* Thisis a network application for security

— He only wants to store a small amount of
information

* On chip storage expensive (in this case, on an FPGA)

3/16/16 Fall 2013 -- Lecture #22 26

1: Permutation Cache

* Traditionally, you would hash the address

— With a "salt" to randomize things

— But this requires storing the whole hash value or
whole IP for your tag

* |Instead of a hash, use a 32b keyed permutation
— Aka a 32b block cypher

* Now you can use a conventional tag/index
approach

— Requiresonly storing the tag -> space mattered in this
application

2: Location Associativity

* The fabric Nick had used "dual-ported” memories
— Like your register file on your processor design: two

independentread ports

* Rather than using set associativity...

Instead do two different permutations (keys) and have one
of two possible locations

* IfX, Y, and Z map to the same location with one key...
— They probably do not on the other key: fewer conflict

misses

— Even better, can probably move a value to further reduce

3/16/16

conflict misses

Fall 2013 -- Lecture #22 28

3/16/16

Simulation...

100% //7””‘

90 %

80% ///

0%/

60 %

50% Direct Mapped
—— 2-way assoc

40 Y% — 2-loc assoc
= 2-loc assoc + search

30%

20 %

10 %

0% T T T
0% 100% 200% 300 %

Desired Percentage Occupancy

Fall 2013 -- Lecture #22

400 %

29

