
CS	61C:	Great	Ideas	in	Computer	
Architecture
Caches	Part	2

Instructors:
Nicholas	Weaver	&	Vladimir	Stojanovic

http://inst.eecs.berkeley.edu/~cs61c/fa15



You	Are	Here!

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Main	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Today’s
Lecture

2



• Four		words/block,	cache	size	=	1K	words

Multiword-Block	Direct-Mapped	Cache

8
Index

2

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31	30			.	.	.						 13	12 11				.	.	.				4 3		2		1		0 Byte	offset

20

20Tag

Hit Data

32

Word	offset

What	kind	of	locality	are	we	taking	advantage	of?
3



Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
• Set	Index:	Selects	which	set
• Tag:	Remaining	portion	of	processor	address

• Size	of	Index	=	log2	(number	of	sets)
• Size	of	Tag	=	Address	size	– Size	of	Index	
– log2	(number	of	bytes/block)

Block offsetSet	IndexTag

4

Processor	Address	(32-bits	total)



Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)

31	30			 				 .	.	.								 				 				13	12		11					.	.	.					 				 		2		1		0 Byte	offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Set	Index

DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1	select

Way	0 Way	1 Way	2 Way	3

5



Handling	Stores	with	Write-Through

• Store	instructions	write	to	memory,	changing	
values

• Need	to	make	sure	cache	and	memory	have	same	
values	on	writes:	2	policies

1)	Write-Through	Policy:	write	cache	and	write	
through	the	cache	to	memory
– Every	write	eventually	gets	to	memory
– Too	slow,	so	you	need	to	include	a	Write	Buffer	to	
allow	processor	to	continue	once	data	in	Buffer

– Buffer	updates	memory	in	parallel	to	processor

6



Write-Through	
Cache

• Write	both	values	in	
cache	and	in	memory

• Write	buffer	stops	CPU	
from	stalling	if	memory	
cannot	keep	up

• Write	buffer	may	have	
multiple	entries	to	
absorb	bursts	of	writes

• What	if	store	misses	in	
cache?

7

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
F252

7
20

12

131C
2041 Addr Data

Write	
Buffer



Handling	Stores	with	Write-Back

2)	Write-Back	Policy:	write	only	to	cache	and	
then	write	cache	block	back	to	memory	when	
evict	block	from	cache
–Writes	collected	in	cache,	only	single	write	to	
memory	per	block

– Include	bit	to	see	if	wrote	to	block	or	not,	and	
then	only	write	back	if	bit	is	set
• Called	“Dirty”	bit	(writing	makes	it	“dirty”)

8



Write-Back	
Cache

• Store/cache	hit,	write	data	in	
cache	only	&	set	dirty	bit
– Memory	has	stale	value

• Store/cache	miss,	read	data	
from	memory,	then	update	
and	set	dirty	bit
– “Write-allocate”	policy

• On	any	miss,	write	back	
evicted	block,	only	if	dirty.	
Update	cache	with	new	block	
and	clear	dirty	bit.

9

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
F252

7
20

12

131C
2041

D
D
D
D

Dirty	
Bits



Write-Through	vs.	Write-Back

• Write-Through:
– Simpler	control	logic
– More	predictable	timing	
simplifies	processor	control	
logic

– Easier	to	make	reliable,	since	
memory	always	has	copy	of	
data	(big	idea:	Redundancy!)

• Write-Back
– More	complex	control	logic
– More	variable	timing	(0,1,2	
memory	accesses	per	
cache	access)

– Usually	reduces	write	
traffic

– Harder	to	make	reliable,	
sometimes	cache	has	only	
copy	of	data

10



Write	Policy	Choices	
• Cache	hit:

– write	through:	writes	both	cache	&	memory	on	every	access
• Generally	higher	memory	traffic	but	simpler	pipeline	&	cache	design

– write	back:	writes	cache	only,	memory	̀ written	only	when	dirty	
entry	evicted
• A	dirty	bit	per	line	reduces	write-back	traffic
• Must	handle	0,	1,	or	2	accesses	 to	memory	for	each	load/store

• Cache	miss:
– no	write	allocate:		only	write	to	main	memory
– write	allocate	(aka	fetch	on	write):		fetch	into	cache

• Common	combinations:
– write	through	and	no	write	allocate
– write	back	with	write	allocate

11



Cache	(Performance) Terms

• Hit	rate:	fraction	of	accesses	that	hit	in	the	cache
• Miss	rate:	1	– Hit	rate
• Miss	penalty:	time	to	replace	a	block	from	lower	
level	in	memory	hierarchy	to	cache

• Hit	time:	time	to	access	cache	memory	(including	
tag	comparison)

• Abbreviation:	“$”	=	cache	(A	Berkeley	innovation!)

12



Average	Memory	Access	Time	(AMAT)
• Average	Memory	Access	Time	(AMAT)	is	the	
average	time	to	access	memory	considering	
both	hits	and	misses	in	the	cache

AMAT	=		 Time	for	a	hit		
+		Miss	rate	× Miss	penalty

13



B:		400	psec

C:		600	psec

A:		≤200	psec☐

☐

☐

☐

14

Clickers/Peer	instruction
AMAT	=		Time	for	a	hit		+		Miss	rate	x Miss	penalty

Given	a	200	psec clock,	a	miss	penalty	of	50	clock	
cycles,	a	miss	rate	of	0.02	misses	per	instruction	and	
a	cache	hit	time	of	1	clock	cycle,	what	is	AMAT?



Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

• Consider	the	main	memory	address	reference	string	of	word	
numbers:																														0			4			0			4			0			4			0			4

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

15



Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00				Mem(0) 00				Mem(0)
01 4

01				Mem(4)
000

00				Mem(0)
01 4

00				Mem(0)
01 4

00				Mem(0)
01 4

01				Mem(4)
000

01				Mem(4)
000

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

• Ping-pong effect	due	to	conflict	misses	- two	memory	
locations	that	map	into	the	same	cache	block

• 8	requests,	8	misses

16

• Consider	the	main	memory	address	reference	string	of	word	
numbers:																														0			4			0			4			0			4			0			4



Alternative	Block	Placement	Schemes

• DM	placement:	mem block	12	in	8	block	cache:	only	one	cache	
block	where	mem block	12	can	be	found—(12	modulo	8)	=	4

• SA	placement:	four	sets	x 2-ways	(8	cache	blocks),	memory	block	12	
in	set	(12	mod	4)	=	0;	either	element	of	the	set

• FA	placement:	mem block	12	can	appear	in	any	cache	blocks
17



Example:	4	Word	2-Way	SA	$
Same	Reference	String

0 4 0 4

• Consider	the	main	memory	word	reference	string
0			4			0			4			0			4			0			4Start	with	an	empty	cache	- all	blocks	

initially	marked	as	not	valid

18



Example:	4-Word	2-Way	SA	$
Same	Reference	String

0 4 0 4

• Consider	the	main	memory	address	reference	string
0			4			0			4			0			4			0			4

miss miss hit hit

000				Mem(0) 000				Mem(0)

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

010				Mem(4) 010				Mem(4)

000				Mem(0) 000				Mem(0)

010				Mem(4)

• Solves	the	ping-pongeffect	in	a	direct-mapped	cache	due	to	
conflict	misses	since	now	two	memory	locations	that	map	into	
the	same	cache	set	can	co-exist!

• 8	requests,	2	misses

19



Different	Organizations	of	an	Eight-Block	Cache

Total	size	of	$	in	blocks	is	equal	to	
number	of	sets	× associativity.	For	
fixed	$	size	and	fixed	block	size,	
increasing associativity	decreases	
number	of	sets	while	increasing	
number	of	elements	per	set.	With	
eight	blocks,	an	8-way	set-
associative	$	is	same	as	a	fully	
associative	$.	

20



Range	of	Set-Associative	Caches
• For	a	fixed-size	cache	and	fixed	block	size,	each	
increase	by	a	factor	of	two	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	or	ways)	
and	halves	the	number	of	sets	– decreases	the	size	of	
the	index	by	1	bit	and	increases	the	size	of	the	tag	by	1	
bit

Word	offset Byte	offsetIndexTag

21



Range	of	Set-Associative	Caches
• For	a	fixed-size	cache	and	fixed	block	size,	each	
increase	by	a	factor	of	two	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	or	ways)	
and	halves	the	number	of	sets	– decreases	the	size	of	
the	index	by	1	bit	and	increases	the	size	of	the	tag	by	1	
bit

Word	offset Byte	offsetIndexTag

Decreasing	associativity

Fully	associative
(only	one	set)
Tag	is	all	the	bits	except
block	and	byte	offset

Direct	mapped
(only	one	way)
Smaller	tags,	only	a	
single	comparator

Increasing	associativity

Selects	the	setUsed	for	tag	compare Selects	the	word	in	the	block

22



Total	Cache	Capacity	=

23

Associativity		× #	of	sets		× block_size
Bytes	=	blocks/set		× sets		× Bytes/block	

Byte	OffsetTag Index

C	=	N		× S		× B

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)



Clickers/Peer	Instruction
• For	a	cache	with	constant	total	capacity,	 if	we	
increase	the	number	of	ways	by	a	factor	of	2,	
which	statement	is	false:

• A:	The	number	of	sets	could	be	doubled
• B:	The	tag	width	could	decrease
• C:	The	block	size	could	stay	the	same
• D:	The	block	size	could	be	halved
• E:		Tag	width	must	increase

24



Total	Cache	Capacity	=

25

Associativity		× #	of	sets		× block_size

Bytes	=	blocks/set		× sets		× Bytes/block	

Byte	OffsetTag Index

C	=	N		× S		× B

Clicker	Question:		C	remains	constant,	S	and/or	B	can	change	such	that	
C	=	2N	*	(SB)’	=>	(SB)’	=	SB/2

Tag_size =	address_size – (log2(S’)	+	log2(B’))	=	address_size – log2(SB)’
=	address_size – log2(SB/2)	
=	address_size – (log2(SB)	– 1)

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)



Costs	of	Set-Associative	Caches
• N-way	set-associative	cache	costs
– N	comparators	(delay	and	area)
– MUX	delay	(set	selection)	before	data	is	available
– Data	available	after	set	selection	(and	Hit/Miss	decision).			
DM	$:	block	is	available	before	the	Hit/Miss	decision
• In	Set-Associative,	not	possible	to	just	assume	a	hit	and	continue	
and	recover	later	if	it	was	a	miss

• When	miss	occurs,	which	way’s	block	selected	for	
replacement?
– Least	Recently	Used	(LRU):	one	that	has	been	unused	the	
longest	(principle	of	temporal	locality)
• Must	track	when	each	way’s	block	was	used	relative	to	other	
blocks	in	the	set

• For	2-way	SA	$,	one	bit	per	set	→	set	to	1	when	a	block	is	
referenced;	reset	the	other	way’s	bit	(i.e.,	“last	used”)

26



Cache	Replacement	Policies
• Random	Replacement

– Hardware	randomly	selects	a	cache	evict
• Least-Recently	Used

– Hardware	keeps	track	of	access	history
– Replace	the	entry	that	has	not	been	used	for	the	longest	time
– For	2-way	set-associative	cache,	need	one	bit	for	LRU	replacement

• Example	of	a	Simple	“Pseudo”	LRU	Implementation
– Assume	64	Fully	Associative	entries
– Hardware	replacement	pointer	points	to	one	cache	entry
– Whenever	access	is	made	to	the	entry	the	pointer	points	to:

• Move	the	pointer	to	the	next	entry
– Otherwise:	do	not	move	the	pointer
– (example	of	“not-most-recently	used”	replacement	policy)

:

Entry	0
Entry	1

Entry		63

Replacement
Pointer

27



Benefits	of	Set-Associative	Caches

• Largest	gains	are	in	going	from	direct	mapped	to	2-way	
(20%+	reduction	in	miss	rate)

28



Sources	of	Cache	Misses	(3	C’s)
• Compulsory	(cold	start,	first	reference):
– 1st access	to	a	block,	not	a	lot	you	can	do	about	it.		

• If	running	billions	of	instructions,	compulsory	misses	are	
insignificant

• Capacity:
– Cache	cannot	contain	all	blocks	accessed	by	the	program

• Misses	that	would	not	occur	with	infinite	cache

• Conflict	(collision):
– Multiple	memory	locations	mapped	to	same	cache	set

• Misses	that	would	not	occur	with	ideal	fully	associative	cache

29


