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Problem:	Large	memories	slow?
Library	Analogy

• Finding	a	book	in	a	large	library	takes	time
– Takes	time	to	search	a	large	card	catalog	– (mapping	
title/author	to	index	number)

– Round-trip	time	to	walk	to	the	stacks	and	retrieve	the	
desired	book.

• Larger	libraries	makes	both	delays	worse
• Electronic	memories	have	the	same	issue,	plus
the	technologies	that	we	use	to	store	an	
individual	bit	get	slower	as	we	increase	density	
(SRAM	versus	DRAM	versus	Magnetic	Disk)

3However	what	we	want	is	a	large	yet	fast	memory!	
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1980	microprocessor	executes	~one	instruction	in	same	time	as	DRAM	access
2015	microprocessor	executes	~1000	instructions	in	same	time	as	DRAM	access

Slow	DRAM	access	could	have	disastrous	impact	on	CPU	performance!	



What	to	do:	Library	Analogy
• Want	to	write	a	report	using	library	books
– E.g.,	works	of	J.D.	Salinger

• Go	to	Doe	library,	look	up	relevant	books,	fetch	
from	stacks,	and	place	on	desk	in	library

• If	need	more,	check	them	out	and	keep	on	desk
– But	don’t	return	earlier	books	since	might	need	them

• You	hope	this	collection	of	~10	books	on	desk	
enough	to	write	report,	despite	10	being	only	
0.00001%	of	books	in	UC	Berkeley	libraries
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• Principle	of	locality	+	memory	hierarchy	presents	programmer	with	
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Real	Memory	Reference	Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 
Memory. IBM Systems Journal 10(3): 168-192 (1971)
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Big	Idea:	Locality

• Temporal	Locality	(locality	in	time)
– Go	back	to	same	book	on	desktop	multiple	times
– If	a	memory	location	is	referenced,	then	it	will	tend	to	
be	referenced	again	soon

• Spatial	Locality (locality	in	space)
– When	go	to	book	shelf,	pick	up	multiple	books	on	J.D.	
Salinger	since	library	stores	related	books	together

– If	a	memory	location	is	referenced,	the	locations	with	
nearby	addresses	will	tend	to	be	referenced	soon

8



Memory	Reference	Patterns

Donald J. Hatfield, Jeanette Gerald: Program 
Restructuring for Virtual Memory. IBM Systems 
Journal 10(3): 168-192 (1971)
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Principle	of	Locality

• Principle	of	Locality:	Programs	access	small	
portion	of	address	space	at	any	instant	of	time	
(spatial	locality)	and	repeatedly	access	that	
portion	(temporal	locality)

• What	program	structures	lead	to	temporal	
and	spatial	locality	in	instruction	accesses?	

• In	data	accesses?

10
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Cache	Philosophy
• Programmer-invisible	hardware	mechanism	to	
give	illusion	of	speed	of	fastest	memory	with	
size	of	largest	memory
–Works	fine	even	if	programmer	has	no	idea	what	a	
cache	is
• However,	performance-oriented	programmers	today	
sometimes	“reverse	engineer”	cache	design	to	design	
data	structures	to	match	cache

12



Memory	Access	without	Cache

• Load	word	instruction:	lw $t0,0($t1)
• $t1	contains	0x12F0,	Memory[0x12F0]	=	99

1. Processor	issues	address	0x12F0 to	Memory
2. Memory	reads	word	at	address	0x12F0 (99)
3. Memory	sends	99	to	Processor
4. Processor	loads	99	into	register	$t0

13
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Memory	Access	with	Cache
• Load	word	instruction:	lw $t0,0($t1)
• $t1	contains	0x12F0,	Memory[0x12F0]	=	99
• With	cache:	Processor	issues	address	0x12F0 to	
Cache
1. Cache	checks	to	see	if	has	copy	of	data	at	address	

0x12F0
2a. If	finds	a	match	(Hit):	cache	reads	99,	sends	to	processor
2b. No	match	(Miss):	cache	sends	address	0x12F0	to	Memory

I. Memory	reads	99	at	address	0x12F0
II. Memory	sends	99	to	Cache
III. Cache	replaces	word	which	can	store	0x12F0	with	new	99
IV. Cache	sends	99	to	processor

2. Processor	loads	99	into	register	$t0
15



Administrivia
• Fill	In

16



Clicker	Question…
• Consider	the	following	statements
– 1:	The	J	instructions	in	MIPS	have	a	delay	slot
– 2:	JAL	records	PC	+	4	into	$ra on	MIPS	with	a	delay	slot
– 3:	The	location	where	to	jump	to	on	a	JR	is	known	in	
the	ID	stage

• Which	are	true?
– A)	None
– B)	1,	3
– C)	1,	2
– D)	2,	3
– E)	1,	3

17



Cache	“Tags”
• Need	way	to	tell	if	have	copy	of	location	in	
memory	so	that	can	decide	on	hit	or	miss

• On	cache	miss,	put	memory	address	of	block	
as	“tag”	of	cache	block
1022	placed	in	tag	next	to	data	from	memory	(99)
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Anatomy	of	a	
16	Byte	Cache,	
4	Byte	Block

• Operations:
1. Cache	Hit
2. Cache	Miss
3. Refill	cache	from	memory

• Cache	needs	Address	Tags	
to	decide	if	Processor	
Address	is	a	Cache	Hit	or	
Cache	Miss
– Compares	all	4	tags
– "Fully	Associative	cache"

Any	tag	can	be	in	any	
location	so	you	have	to	
check	them	all
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Tag Data

252 12
1022 99
131 7
2041 20

Tag Data

0x1F00 12
0x12F0 99
0x050C 11
0x001C 20

Cache	Replacement
• Suppose	processor	now	requests	location	0x050C,	which	
contains	11?

• Doesn’t	match	any	cache	block,	so	must	“evict”	one	
resident	block	to	make	room
– Which	block	to	evict?

• Replace	“victim”	with	new	memory	block	at	address	
0x050C

20



Block	Must	be	Aligned	in	Memory

• Word	blocks	are	aligned,	so	binary	address	of	
all	words	in	cache	always	ends	in	00two

• How	to	take	advantage	of	this	to	save	
hardware	and	energy?

• Don’t	need	to	compare	last	2	bits	of	32-bit	
byte	address	(comparator	can	be	narrower)

=>	Don’t	need	to	store	last	2	bits	of	32-bit	byte	
address	in	Cache	Tag	(Tag	can	be	narrower)

21



Anatomy	of	a	32B	
Cache,	8B	Block
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Hardware	Cost	of	
Cache

• Need	to	compare	every	
tag	to	the	Processor	
address

• Comparators	are	
expensive

• Optimization:	use	2	“sets”	
of	data	with	a	total	of	only	
2	comparators

• 1	Address	bit	selects	
which	set	(ex:	even	and	
odd	set)

• Compare	only	tags	from	
selected	set

• Generalize	to	more	sets

2323
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Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
• Set	Index:	Selects	which	set
• Tag:	Remaining	portion	of	processor	address

• Size	of	Index	=	log2	(number	of	sets)
• Size	of	Tag	=	Address	size	– Size	of	Index	
– log2	(number	of	bytes/block)

Block offsetSet	IndexTag

24

Processor	Address	(32-bits	total)



What	is	limit	to	number	of	sets?
• For	a	given	total	number	of	blocks,	we	can	
save	more	comparators	if	have	more	than	2	
sets

• Limit:	As	Many	Sets	as	Cache	Blocks	=>	only	
one	block	per	set	– only	needs	one	
comparator!	

• Called	“Direct-Mapped”	Design

25
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Cache	Names	for	Each	Organization
• “Fully	Associative”:	Block	can	go	anywhere
– First	design	in	lecture
– Note:	No	Index	field,	but	1	comparator/block

• “Direct	Mapped”:	Block	goes	one	place	
– Note:	Only	1	comparator
– Number	of	sets	=	number	blocks

• “N-way	Set	Associative”:	N	places	for	a	block
– Number	of	sets	=	number	of	blocks	/	N
– N	comparators
– Fully	Associative:	N	=	number	of	blocks
– Direct	Mapped:	N	=	1

26



00000
00001
00010
00011
00100
00101
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010100100000

010100110000

010101000000

010101010000

010101100000

010101110000

010110000000

010110010000

010110100000
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010110110000
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010100100000
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Block	number	aliasing	example

3/11/16 28

Block	# Block	#	mod	8 Block	#	mod	2

12-bit	memory	addresses,	16	Byte	blocks



Direct	Mapped	Cache	Ex:	
Mapping	a	6-bit	Memory	Address

• In	example,	block	size	is	4	bytes (1	word)
• Memory	and	cache	blocks	always	the	same	size,	unit	of	transfer	between	

memory	and	cache
• #	Memory	blocks	>>	#	Cache	blocks

– 16	Memory	blocks	=	16	words	=	64	bytes	=>	6	bits	to	address	all	bytes
– 4	Cache	blocks,	4	bytes	(1	word)	per	block
– 4	Memory	blocks	map	to	each	cache	block

• Memory	block	to	cache	block,	aka	index:	middle	two	bits
• Which	memory	block	is	in	a	given	cache	block,	aka	tag:	top	two	bits

29
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Caching:		A	Simple	First	Example

00
01
10
11

Cache

Main	Memory

Q:	Where	in	the	cache	is	
the	mem block?

Use	next	2	low-order	
memory	address	bits	–
the	index	– to	determine	
which	cache	block	(i.e.,	
modulo	the	number	of	
blocks	in	the	cache)

Tag Data

Q:	Is	the	memory	block	in	
cache?
Compare	the	cache	tag	to	the	
high-order	2	memory	address	
bits	to	tell	if	the	memory	
block	is	in	the	cache	
(provided	valid	bit	is	set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One	word	blocks
Two	low	order	bits	(xx)	
define	 the	byte	in	the
block	(32b	words)

Index

30



One	More	Detail:	Valid	Bit

• When	start	a	new	program,	cache	does	not	
have	valid	information	for	this	program

• Need	an	indicator	whether	this	tag	entry	is	
valid	for	this	program

• Add	a	“valid	bit”	to	the	cache	tag	entry
0	=>	cache	miss,	even	if	by	chance,	address	=	tag
1	=>	cache	hit,	if	processor	address	=	tag

31



• One	word	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache	Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31	30			 				 .	.	.							 13	12		11					 .	.	.							 2		1		0
Byte	offset

What	kind	of	locality	are	we	taking	advantage	of?

20
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32

Hit

32
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something	
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Compare	
Tag	with	

upper	part	of	
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see	if	a	Hit

Read
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memory	
if	a	Hit
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• Four		words/block,	cache	size	=	1K	words

Multiword-Block	Direct-Mapped	Cache

8
Index

2

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31	30			.	.	.						 13	12 11				.	.	.				4 3		2		1		0 Byte	offset

20

20Tag

Hit Data

32

Word	offset

What	kind	of	locality	are	we	taking	advantage	of?
33



Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
• Set	Index:	Selects	which	set
• Tag:	Remaining	portion	of	processor	address

• Size	of	Index	=	log2	(number	of	sets)
• Size	of	Tag	=	Address	size	– Size	of	Index	
– log2	(number	of	bytes/block)

Block offsetSet	IndexTag

34

Processor	Address	(32-bits	total)



• One	word	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache	Review

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31	30			 				 .	.	.							 13	12		11					 .	.	.							 2		1		0
Byte	offset

20

Data

32

Hit

35
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Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)

31	30			 				 .	.	.								 				 				13	12		11					.	.	.					 				 		2		1		0 Byte	offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Set	Index

DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1	select

Way	0 Way	1 Way	2 Way	3

36



Handling	Stores	with	Write-Through

• Store	instructions	write	to	memory,	changing	
values

• Need	to	make	sure	cache	and	memory	have	same	
values	on	writes:	2	policies

1)	Write-Through	Policy:	write	cache	and	write	
through	the	cache	to	memory
– Every	write	eventually	gets	to	memory
– Too	slow,	so	include	Write	Buffer	to	allow	processor	to	
continue	once	data	in	Buffer

– Buffer	updates	memory	in	parallel	to	processor

37



Write-Through	
Cache

• Write	both	values	in	
cache	and	in	memory

• Write	buffer	stops	CPU	
from	stalling	if	memory	
cannot	keep	up

• Write	buffer	may	have	
multiple	entries	to	
absorb	bursts	of	writes

• What	if	store	misses	in	
cache?

38
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Handling	Stores	with	Write-Back

2)	Write-Back	Policy:	write	only	to	cache	and	
then	write	cache	block	back	to	memory	when	
evict	block	from	cache
–Writes	collected	in	cache,	only	single	write	to	
memory	per	block

– Include	bit	to	see	if	wrote	to	block	or	not,	and	
then	only	write	back	if	bit	is	set
• Called	“Dirty”	bit	(writing	makes	it	“dirty”)

39



Write-Back	
Cache

• Store/cache	hit,	write	data	in	
cache	only	&	set	dirty	bit
– Memory	has	stale	value

• Store/cache	miss,	read	data	
from	memory,	then	update	
and	set	dirty	bit
– “Write-allocate”	policy

• On	any	miss,	write	back	
evicted	block,	only	if	dirty.	
Update	cache	with	new	block	
and	clear	dirty	bit.

40
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Write-Through	vs.	Write-Back

• Write-Through:
– Simpler	control	logic
– More	predictable	timing	
simplifies	processor	control	
logic

– Easier	to	make	reliable,	since	
memory	always	has	copy	of	
data	(big	idea:	Redundancy!)

• Write-Back
– More	complex	control	logic
– More	variable	timing	(0,1,2	
memory	accesses	per	
cache	access)

– Usually	reduces	write	
traffic

– Harder	to	make	reliable,	
sometimes	cache	has	only	
copy	of	data

41



Write	Policy	Choices	
• Cache	hit:

– write	through:	writes	both	cache	&	memory	on	every	access
• Generally	higher	memory	traffic	but	simpler	pipeline	&	cache	design

– write	back:	writes	cache	only,	memory	̀ written	only	when	dirty	
entry	evicted
• A	dirty	bit	per	line	reduces	write-back	traffic
• Must	handle	0,	1,	or	2	accesses	 to	memory	for	each	load/store

• Cache	miss:
– no	write	allocate:		only	write	to	main	memory
– write	allocate	(aka	fetch	on	write):		fetch	into	cache

• Common	combinations:
– write	through	and	no	write	allocate
– write	back	with	write	allocate

42



Cache	(Performance) Terms

• Hit	rate:	fraction	of	accesses	that	hit	in	the	cache
• Miss	rate:	1	– Hit	rate
• Miss	penalty:	time	to	replace	a	block	from	lower	
level	in	memory	hierarchy	to	cache

• Hit	time:	time	to	access	cache	memory	(including	
tag	comparison)

• Abbreviation:	“$”	=	cache	(A	Berkeley	innovation!)

43



Average	Memory	Access	Time	(AMAT)
• Average	Memory	Access	Time	(AMAT)	is	the	
average	time	to	access	memory	considering	
both	hits	and	misses	in	the	cache

AMAT	=		 Time	for	a	hit		
+		Miss	rate	× Miss	penalty

44



B:		400	psec

C:		600	psec

A:		≤200	psec☐

☐

☐

☐

45

Clickers/Peer	instruction
AMAT	=		Time	for	a	hit		+		Miss	rate	x Miss	penalty

Given	a	200	psec clock,	a	miss	penalty	of	50	clock	
cycles,	a	miss	rate	of	0.02	misses	per	instruction	and	
a	cache	hit	time	of	1	clock	cycle,	what	is	AMAT?



Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

• Consider	the	main	memory	address	reference	string	of	word	
numbers:																														0			4			0			4			0			4			0			4

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid
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Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00				Mem(0) 00				Mem(0)
01 4

01				Mem(4)
000

00				Mem(0)
01 4

00				Mem(0)
01 4

00				Mem(0)
01 4

01				Mem(4)
000

01				Mem(4)
000

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

• Ping-pong effect	due	to	conflict	misses	- two	memory	
locations	that	map	into	the	same	cache	block

• 8	requests,	8	misses
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• Consider	the	main	memory	address	reference	string	of	word	
numbers:																														0			4			0			4			0			4			0			4


