
CS	61C:	
Great	Ideas	in	Computer	Architecture	

Pipelining	and	Hazards

1

Instructors:
Vladimir	Stojanovic	and	Nicholas	Weaver
http://inst.eecs.Berkeley.edu/~cs61c/sp16

Pipelined	Execution	Representation

• Every	instruction	must	take	same	number	of	
steps,	so	some	stages	will	idle
– e.g.	MEM	stage	for	any	arithmetic	instruction

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

Time

2

Graphical	Pipeline	Diagrams

• Use	datapath figure	below	to	represent	pipeline:
IF ID EX Mem WB

A
LUI$ Reg D$ Reg

1.	Instruction
Fetch

2.	Decode/
Register	Read

3.	Execute 4.	Memory 5.	Write
Back

PC

in
st

ru
ct

io
n

m
em

or
y

+4

Register
Filert

rs
rd

ALU

D
at

a
m

em
or

y

imm

M
U

X

3

I
n
s
t
r

O
r
d
e
r

Load

Add

Store

Sub

Or

I$

Time (clock cycles)

I$

A
LU

Reg

Reg

I$

D$

A
LU

A
LU

Reg

D$

Reg

I$

D$

Reg

A
LU

Reg Reg

Reg

D$

Reg

D$

A
LU

• RegFile: left half is write, right half is read

Reg

I$

Graphical	Pipeline	Representation

4

Pipelining	Performance	(1/3)
• Use	Tc (“time	between	completion	of	
instructions”)	to	measure	speedup
–
– Equality	only	achieved	if	stages	are	balanced
(i.e.	take	the	same	amount	of	time)

• If	not	balanced,	speedup	is	reduced
• Speedup	due	to	increased	throughput

– Latency for	each	instruction	does	not	decrease
– In	fact,	latency must	increase	as	the	pipeline	registers	
themselves	add	delay	(why	Nick's	Ph.D.	thesis	has	a	
"this	was	a	stupid	idea"	chapter)

5

Pipelining	Performance	(2/3)

• Assume	time	for	stages	is
– 100ps	for	register	read	or	write
– 200ps	for	other	stages

• What	is	pipelined	clock	rate?
– Compare	pipelined	datapath with	single-cycle	datapath

Instr Instr
fetch

Register
read

ALU op Memory
access

Register
write

Total
time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

6

Pipelining	Performance	(3/3)

Single-cycle
Tc = 800 ps
f = 1.25GHz

Pipelined
Tc = 200 ps

f = 5GHz

7

Clicker/Peer	Instruction
Logic	in	some	stages	takes	200ps	and	in	some	
100ps.	Clk-Q	delay	is	30ps	and	setup-time	is	
20ps.	What	is	the	maximum	clock	frequency	at	
which	a	pipelined	design	can	operate?
• A:	10GHz
• B:	5GHz
• C:	6.7GHz
• D:	4.35GHz
• E:	4GHz

8

Administrivia…

• Start	on	Project	3-1	now
– Logisim can	be	a	bit,	well,	tedious:
The	project	isn't	necessarily	hard	but	it	will	take	a	
fair	amount	of	time
• Alternative	would	be	to	have	you	learn	yet	another
programming	language	in	this	class!

– For	reference,	it	took	Nick	about	an	hour	of	
tediously	drawing	lines	for	his	solution	to	part	1
• 5	minutes	to	know	what	he	wanted	to	do…
• And	55	minutes	to	actually	do	it.		L

9

Pipelining	Hazards

A	hazard is	a	situation	that	prevents	starting	the	
next	instruction	in	the	next clock	cycle

1) Structural	hazard
– A	required	resource	is	busy
(e.g.	needed	in	multiple	stages)

2) Data	hazard
– Data	dependency	between	instructions
– Need	to	wait	for	previous	instruction	to	complete	

its	data	read/write
3) Control	hazard

– Flow	of	execution	depends	on	previous	instruction
10

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUReg D$ Reg

A
LUI$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Structural	Hazard	#1:	Single	Memory

Trying to
read same
memory
twice in same
clock cycle

11

Solving	Structural	Hazard	#1	with	
Caches

12

Structural	Hazard	#2:	Registers	(1/2)

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUReg D$ Reg

A
LUI$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Can we read
and write to
registers
simultaneously?

13

Structural	Hazard	#2:	Registers	(2/2)

• Two	different	solutions	have	been	used:
1) Split	RegFile access	in	two:		Write	during	1st half	and	

Read	during	2nd half	of	each	clock	cycle
• Possible	because	RegFile access	is	VERY fast	

(takes	less	than	half	the	time	of	ALU	stage)
2) Build	RegFile with	independent	read	and	write	ports	

(E.g.	for	your	project)

• Conclusion:	Read	and	Write	to	registers	during	
same	clock	cycle	is	okay

Structural	hazards	can	(almost)	always	be	removed	
by	adding	hardware	 resources

14

Data	Hazards	(1/2)

• Consider	the	following	sequence	of	
instructions:

add $t0, $t1, $t2
sub $t4, $t0, $t3
and $t5, $t0, $t6
or $t7, $t0, $t8
xor $t9, $t0, $t10

15

2.	Data	Hazards	(2/2)
• Data-flow	backwards in	time	are	hazards

sub $t4,$t0,$t3
A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg
I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

16

Data	Hazard	Solution:	Forwarding
• Forward	result	as	soon	as	it	is	available

– OK	that	it’s	not	stored	in	RegFile yet

sub $t4,$t0,$t3
A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

17

Datapath for Forwarding	(1/2)

• What changes need to be made here?

18

Datapath for	Forwarding	(2/2)

• Handled	by	forwarding	unit

19

Datapath and	Control

• The	control	signals	are	pipelined,	too
20

Data	Hazard:	Loads	(1/3)

• Recall: Dataflow	backwards	in	time	are	
hazards

• Can’t	solve	all	cases	with	forwarding
– Must	stall instruction	dependent	on	load,	then	
forward	(more	hardware)

sub $t3,$t0,$t2

A
LUI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

21

Data	Hazard:	Loads	(2/3)
• Stalled	instruction	converted	to	“bubble”,	acts	like	nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
LUReg D$

lw $t0, 0($t1) A
LUI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

sub $t3,$t0,$t2

22

I$ Reg

First two pipe
stages stall by
repeating stage
one cycle later

Data	Hazard:	Loads	(4/4)

• Slot	after	a	load	is	called	a	load	delay	slot
– If	that	instruction	uses	the	result	of	the	load,	then	
the	hardware	interlock	will	stall	it	for	one	cycle

– Letting	the	hardware	stall	the	instruction	in	the	
delay	slot	is	equivalent	to	putting	an	explicit	nop
in	the	slot		(except	the	latter	uses	more	code	
space)

• Idea: Let	the	compiler	put	an	unrelated	
instruction	in	that	slot	à no	stall!

23

Clicker	Question
How	many	cycles	(pipeline	fill+process+drain)	
does	it	take	to	execute	the	following	code?

lw$t1, 0($t0)
lw$t2, 4($t0)
add $t3, $t1, $t2
sw$t3, 12($t0)
lw$t4, 8($t0)
add $t5, $t1, $t4
sw$t5, 16($t0)

24

A. 7
B. 9
C. 11
D. 13
E. 14

Code	Scheduling	to	Avoid	Stalls

• Reorder	code	to	avoid	use	of	load	result	in	the	
next	instruction!

• MIPS	code	for		D=A+B; E=A+C;
Method 1:
lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)
add $t5, $t1, $t4

sw $t5, 16($t0)

Method 2:
lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)
add $t5, $t1, $t4

sw $t5, 16($t0)

Stall!

Stall!

13 cycles 11 cycles
25

3.	Control	Hazards

• Branch	determines	flow	of	control
– Fetching	next	instruction	depends	on	branch	
outcome

– Pipeline	can’t	always	fetch	correct	instruction
• Still	working	on	ID	stage	of	branch

• BEQ,	BNE	in	MIPS	pipeline	
• Simple	solution	Option	1:	Stall	on	every	
branch	until	branch	condition	resolved	
– Would	add	2	bubbles/clock	cycles	for	every	
Branch!	(~	20%	of	instructions	executed)

26

Stall	=>	2	Bubbles/Clocks

Where do we do the compare for the branch?

I$

beq

Instr 1

Instr 2

Instr 3

Instr 4
A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUReg D$ Reg

A
LUI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

27

Control	Hazard:	Branching

• Optimization	#1:
– Insert	special	branch	comparator	in	Stage	2
– As	soon	as	instruction	is	decoded	(Opcode
identifies	it	as	a	branch),	immediately	make	a	
decision	and	set	the	new	value	of	the	PC

– Benefit:	since	branch	is	complete	in	Stage	2,	only	
one	unnecessary	instruction	is	fetched,	so	only	
one	no-op	is	needed

– Side	Note:	means	that	branches	are	idle	in	Stages	
3,	4	and	5

28

One	Clock	Cycle	Stall

Branch comparator moved to Decode stage.

I$

beq

Instr 1

Instr 2

Instr 3

Instr 4
A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUReg D$ Reg

A
LUI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

29

Control	Hazards:	Branching

• Option	2:	Predict	outcome	of	a	branch,	fix	up	
if	guess	wrong	
– Must	cancel	all	instructions	in	pipeline	that	
depended	on	guess	that	was	wrong

– This	is	called	“flushing”	the	pipeline
• Simplest	hardware	if	we	predict	that	all	
branches	are	NOT	taken
– Why?

30

Control	Hazards:	Branching

• Option	#3:	Redefine	branches
– Old	definition:	if	we	take	the	branch,	none	of	the	
instructions	after	the	branch	get	executed	by	accident

– New	definition:	whether	or	not	we	take	the	branch,	
the	single	instruction	immediately	following	the	
branch	gets	executed	(the	branch-delay	slot)

• Delayed	Branch	means	we	always	execute	inst	
after	branch

• This	optimization	is	used	with	MIPS

31

Example:	Nondelayed vs.	Delayed	Branch

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Nondelayed Branch
add $1, $2,$3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Delayed Branch

Exit: Exit:
32

Control	Hazards:	Branching

• Notes	on	Branch-Delay	Slot
– Worst-Case	Scenario:	put	a	nop in	the	branch-
delay	slot

– Better	Case:	place	some	instruction	preceding	the	
branch	in	the	branch-delay	slot—as	long	as	the	
changed	doesn’t	affect	the	logic	of	program
• Re-ordering	instructions	is		common	way	to	speed	up	
programs

• Compiler	usually	finds	such	an	instruction	50%	of	time
• Jumps	also	have	a	delay	slot	…

33

Greater	Instruction-Level	Parallelism	(ILP)

• Deeper	pipeline	(5	=>	10	=>	15	stages)
– Less	work	per	stage	⇒ shorter	clock	cycle

• Multiple	issue	“superscalar”
– Replicate	pipeline	stages	⇒multiple	pipelines
– Start	multiple	instructions	per	clock	cycle
– CPI	<	1,	so	use	Instructions	Per	Cycle	(IPC)
– E.g.,	4GHz	4-way	multiple-issue

• 16	BIPS,	peak	CPI	=	0.25,	peak	IPC	=	4
– But	dependencies	reduce	this	in	practice

• “Out-of-Order”	execution
– Reorder	instructions	dynamically	in	hardware	to	reduce	impact	of	

hazards
• "Multithreading"

– Share	functional	units	between	independent	threads	of	execution
• Take	CS152	next	to	learn	about	these	techniques!

34

In	Conclusion

• Pipelining	increases	throughput	by	overlapping	
execution	of	multiple	instructions	in	different	
pipestages

• Pipestages should	be	balanced	for	highest	clock	rate
• Three	types	of	pipeline	hazard	limit	performance

– Structural	(always	fixable	with	more	hardware)
– Data	(use	interlocks	or	bypassing	to	resolve)
– Control	(reduce	impact	with	branch	prediction	or	branch	
delay	slots)

35

