CS 61C:
Great Ideas in Computer Architecture
MIPS Datapath

Instructors:
Nicholas Weaver & Vladimir Stojanovic
http://inst.eecs.Berkeley.edu/~cs61c/spl6

Arithmetic and Logic Unit

* Most processors contain a special logic block
called the “Arithmetic and Logic Unit~ (ALU)

* We' ll show you an easy one that does ADD,
SUB, bitwise AND, bitwise OR

A B
{2 4 when S=00, R=A+B
\ ALU / g When S=01, R=A-B
| when S=10, R=A AND B
i when S=11, R=A OR B

R

Our simple ALU

S — QM/SU\:ﬁde AND J L oR
l T 32 | | 32
ove,r‘Q\ou\) x_é,
+32 \0 \ /___ L.
¢
o \ |/ &
2L

How to design Adder/Subtractor?

« Truth-table, then * Look at breaking the
determine canonical problem down into
form, then minimize smaller pieces that we
and implement as can cascade or

we’ ve seen before hierarchically layer

Adder/Subtractor — One-bit adder

a3
+ b3

LSB... (Half Adder)

d9
b

dj
by

ap bo | So Ci
O 010 O
O 1|1 O
1 0|1 O
1 1,0 1

Adder/Subtractor — One-bit
full-adder (1/2);..

7 0]
.

T.

Ci+1

0

O O O

e O O = = OO

0

bt OO = OO = O

— O O = O = = O

O = O O O

Adder/Subtractor — One-bit adder (2/2)

S; = XOR(CLZ', bi, CZ')
Cit1 = MAJ(GIZ', bz', Cz') = aibi + a;C; + b,,;Ci

N 1-bit adders = 1 N-bit adder

What about overflow?
Overflow =c,?

Extremely Clever
Adder/Subtractor

b, a, bo Qo

L $ |
Sn-| S\ Se x y| XOR(xy)
? XOR serves as 00| o
owrtlew - onditional inverter! e
Aka "Subtract is Invert and add 1", ;|

Clicker Question

Convertthe truth table to a boolean expression
(no need to simplify):

A: F =xy +x(~y)

x y| F(x)y)
B: F=xy+ (“x)y+ (“x)(™y) 00 0
1 1
C: F=(~x)y+x(~y) 0
10 0
D:F =xy+(“x)y 1 1 1

E: F=(x+y)(~x+"y)

10

Administrivia

* Project 2-2 is out!

11

Components of a Computer

Processor
Enable?

Read/Write

Address
Write
"NCEISLETS: Data

‘Arithmetic & Logic Unit Read
(ALU) Data

\ J
Y \ J

Processor-Memory Interface

|/O-Memory Interfaces
12

The CPU

* Processor (CPU): the active part of the
computer that does all the work (data
manipulation and decision-making)

e Datapath: portion of the processor that
contains hardware necessary to perform
operations required by the processor (the
brawn)

e Control: portion of the processor (also in
hardware) that tells the datapath what needs
to be done (the brain)

Datapath and Control

Datapath designed to support data transfers
required by instructions

Controller causes correct transfers to happen

c rd SO
O o> 2l
> o B3 O |rs %) -
S E [P D > ALU JLe
Eg [t o © £
w e > > O O
S Y =
imm >
/ +4
vy >
< T
x vopcode, funct

[' | Controller]

14

Five Stages of Instruction Execution

Stage 1: Instruction Fetch

Stage 2: Instruction Decode

Stage 3: ALU (Arithmetic-Logic Unit)
Stage 4: Memory Access

Stage 5: Register Write

15

Stages of Execution on Datapath

¢

c rd S S
O o> r—» 2
o S S |rs k%) -
S E P @2 > ALU 8 o
Eo (M o T E
w e > > O O
= c
imm >
.
<
o > o P> o P> o > o >
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Register
Fetch Register Write

Read

16

Stages of Execution (1/5)

* Thereis a wide variety of MIPS instructions: so
what general steps do they have in common?

e Stage 1: Instruction Fetch

— no matter what the instruction, the 32-bit
instruction word must first be fetched from
memory (the cache-memory hierarchy)

— also, this is where we Increment PC
(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)

Stages of Execution (2/5)

e Stage 2: Instruction Decode

— upon fetching the instruction, we next gather data
from the fields (decode all necessary instruction
data)

— first, read the opcode to determine instruction
type and field lengths

— second, read in data from all necessary registers
» for add, read two registers
* for addi, read one register
* for jal, no reads necessary

18

Stages of Execution (3/5)

e Stage 3: ALU (Arithmetic-Logic Unit)

— the real work of most instructions is done here:
arithmetic (+, -, *, /), shifting, logic (&, |),
comparisons (slt)

— what about loads and stores?
e lw StO, 40(St1)

* the address we are accessing in memory = the
value in St1 PLUS the value 40

* so we do this addition in this stage

19

Stages of Execution (4/5)

* Stage 4: Memory Access

— actually only the load and store instructions do
anything during this stage; the others remain idle
during this stage or skip it all together

— since these instructions have a unique step, we
need this extra stage to account for them

— as a result of the cache system, this stage is
expected to be fast

20

Stages of Execution (5/5)

* Stage 5: Register Write

— most instructions write the result of some
computation into a register

— examples: arithmetic, logical, shifts, loads, slt

— what about stores, branches, jumps?
e don’t write anythinginto a register at the end

* these remain idle during this fifth stage or skip it all
together

21

Stages of Execution on Datapath

¢

c rd S S
O o> r—» 2
o S S |rs k%) -
S E P @2 > ALU 8 o
Eo (M o T E
w e > > O O
= c
imm >
.
<
o > o P> o P> o > o >
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Register
Fetch Register Write

Read

22

Datapath Walkthroughs (1/3)

e add Sr3,5r1,Sr2 #r3 =rl+r2
— Stage 1: fetch this instruction, increment PC

— Stage 2: decode to determine it is an add,
then read registers Srl and Sr2

— Stage 3: add the two values retrieved in Stage 2
— Stage 4: idle (nothing to write to memory)
— Stage 5: write result of Stage 3 into register Sr3

23

PC

Example: add Instruction

addr3,rl, r2

instruction

memory

1=

M1

registers

imm

reg[1] + reg|2]

» ALU

Date
memary

24

Datapath Walkthroughs (2/3)

e sltiSr3,5r1,17
#if (rl<17)r3=1elser3 =0
— Stage 1: fetch this instruction, increment PC

— Stage 2: decode to determine it is an slti,
then read register Srl

— Stage 3: compare value retrieved in Stage 2
with the integer 17

— Stage 4: idle

— Stage 5: write the result of Stage 3 (1 if reg source
was less than signed immediate, O otherwise) into
register Sr3

25

PC

Example: slti Instruction

sltir3, r1, 17

> —

reg[1] <177

X
1

registers

3
—>

instruction
memory

-+
—_—
~

A 4

imm

26

Datapath Walkthroughs (3/3)

e swSr3,16(5r1) # Mem|[r1+16]=r3
— Stage 1: fetch this instruction, increment PC

— Stage 2: decode to determine it is a sw,
then read registers Sr1 and Sr3

— Stage 3: add 16 to value in register Srl (retrieved in
Stage 2) to compute address

— Stage 4: write value in register Sr3 (retrieved in
Stage 2) into memory address computed in Stage 3

— Stage 5: idle (nothing to write into a register)

27

Example: sw Instruction

sw r3, 16(rl) l
reg[l] + 16
. o |resl(i]
S K 3 -
"6 O ‘D d
— > ALU 3o
= GEJ 3 © |reg[3] © £
w e P T > 0 o
k= =
imm
16 -

MEM[r1+17] =r3

28

Why Five Stages? (1/2)

* Could we have a different number of stages?

— Yes, other ISAs have different natural number of
stages

* And these days, pipeliningcan be much more
aggressive than the "natural” 5 stages MIPS uses

 Why does MIPS have five if instructions tend
to idle for at least one stage?

— Five stages are the union of all the operations
needed by all the instructions.

— One instruction uses all five stages: the load

Why Five Stages? (2/2)

* |w Sr3,16(Srl1) # r3=Mem[r1+16]
— Stage 1: fetch this instruction, increment PC

— Stage 2: decode to determine it is a lw,
then read register Sri

— Stage 3: add 16 to value in register Srl (retrieved
in Stage 2)

— Stage 4: read value from memory address
computed in Stage 3

— Stage 5: write value read in Stage 4 into
register Sr3

PC

Example: lw Instruction

lwr3, 17(r1) l
y reg[1]
(7))
S~ |- ©
S0 1 0
O —
=5 [3)] €
2e " "

reg[1l] + 16
-
> ALU 8 o
© £
O o
=
>

MEM([r1+16]

31

Clickers/Peer Instruction

* Which type of MIPS instruction is active in the
fewest stages?

A: LW

B: BEQ
C:J

D: JAL
E: ADDU

32

Processor Design: 5 steps

Step 1: Analyze instruction set to determine datapath
requirements

— Meaning of each instruction is given by register transfers

— Datapath must include storage element for ISA registers

— Datapath must support each register transfer

Step 2: Select set of datapath components & establish
clock methodology

Step 3: Assemble datapath components that meet the
requirements

The MIPS Instruction Formats

e All MIPS instructionsare 32 bits long. 3 formats:

31 26 21 16 11 6 0
— R-type op rs rt rd shamt funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 26 21 16 0
— |-type op rs rt |
6 bits 5 bits 5 bits 16 bits
31 26 0
J-type op target address I
6 bits 26 bits

The different fields are:

op: operation(“opcode”) of the instruction

rs, rt, rd: the source and destination register specifiers

shamt:shift amount

funct: selects the variant of the operationin the “op” fie
:address offset orimmediate value

target address: target address of jump instruction

Id

34

The MIPS-lite Subset

ADDU and SUBU

— addu rd,rs,rt

— subu rd,rs,rt

OR Immediate:

—ori rt,rs,immlé6

LOAD and
STORE Word

— 1w rt,rs,immlé6

— sw rt,rs,immlé6

BRANCH:

31 26 21 16 11 6 0
op rs rt rd shamt funct I
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 26 21 16 0
op rs rt immediate I
6 bits 5 bits 5 bits 16 bits
31 26 21 16 0
op rs rt immediate I
6 bits 5 bits 5 bits 16 bits
31 26 21 16 0
op rs rt immediate I
5 bits 5 bits 16 bits

— beq rs,rt,immlé °°®

35

Register Transfer Level (RTL)

e Colloquially called “Register Transfer Language”
 RTL gives the meaning of the instructions
e All start by fetching the instruction itself

{op , rs , rt , rd , shamt , funct} < MEM[PC]
{op , rs , rt , Imml6} < MEM[PC]
Inst Register Transfers

ADDU R[rd] < R[rs] + R[rt]; PC < PC + 4

SUBU R[rd] < R[rs] — R[rt]; PC < PC + 4

ORI R[rt] < R[rs] | zero ext(Immlé6); PC < PC + 4

LOAD R[rt] < MEM[R[rs] + sign ext(Immlé6)]; PC < PC + 4
STORE MEM[R[rs] + sign ext(Imml6)] < R[rt]; PC < PC + 4

BEQ if (R[rs] == R[rt])
PC < PC + 4 + {sign ext(Imml6), 2'b00}

else PC << PC + 4 .

In Conclusion

“Divide and Conquer” to build complex logic
blocks from smaller simpler pieces (adder)

Five stages of MIPS instruction execution
Mapping instructions to datapath components
Single long clock cycle per instruction

