
CS	61C:	
Great	Ideas	in	Computer	Architecture	

MIPS Datapath

1

Instructors:
Nicholas	Weaver	&	Vladimir	Stojanovic

http://inst.eecs.Berkeley.edu/~cs61c/sp16

Arithmetic and Logic Unit

• Most	processors	contain	a	special	logic	block	
called	the	“Arithmetic	and	Logic	Unit” (ALU)

• We’ll show	you	an	easy	one	that	does	ADD,	
SUB,	bitwise	AND,	bitwise	OR

2

Our simple ALU

3

How to design Adder/Subtractor?
• Truth-table, then

determine canonical
form, then minimize
and implement as
we’ve seen before

• Look at breaking the
problem down into
smaller pieces that we
can cascade or
hierarchically layer

4

Adder/Subtractor – One-bit adder
LSB… (Half Adder)

5

Adder/Subtractor – One-bit
full-adder (1/2)…

6

Adder/Subtractor – One-bit adder (2/2)

7

N 1-bit adders ⇒ 1 N-bit adder

What about overflow?
Overflow = cn?

+ + +
b0

8

x y XOR(x,y)
0 0 0
0 1 1
1 0 1
1 1 0

+ + +

XOR serves as
conditional inverter!

Aka "Subtract is Invert and add 1"
9

Extremely Clever
Adder/Subtractor

Clicker	Question
Convert	the	truth	table	to	a	boolean expression	
(no	need	to	simplify):

A:	F	=	xy +	x(~y)

B:	F	=	xy +	(~x)y	+	(~x)(~y)

C:	F	=	(~x)y	+	x(~y)

D:	F	=	xy +	(~x)y

E:	F	=	(x+y)(~x+~y)

10

x y F(x,y)
0 0 0
0 1 1
1 0 0
1 1 1

Administrivia

• Project	2-2	is	out!

11

Processor

Control

Datapath

Components	of	a	Computer

12

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	 Interface I/O-Memory	Interfaces

Program

Data

The	CPU
• Processor	(CPU):	the	active	part	of	the	
computer	that	does	all	the	work	(data	
manipulation	and	decision-making)

• Datapath:	portion	of	the	processor	that	
contains	hardware	necessary	to	perform	
operations	required	by	the	processor	(the	
brawn)

• Control:	portion	of	the	processor	(also	in	
hardware)	that	tells	the	datapath what	needs	
to	be	done	(the	brain)

13

Datapath	and	Control
• Datapath designed	to	support	data	transfers	
required	by	instructions

• Controller	causes	correct	transfers	to	happen	

Controller
opcode, funct

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s
ALU

D
at

a
m

em
or

y

imm

PC

14

Five	Stages	of	Instruction	Execution
• Stage	1:	Instruction	Fetch

• Stage	2:	Instruction	Decode

• Stage	3:	ALU	(Arithmetic-Logic	Unit)

• Stage	4:	Memory	Access

• Stage	5:	Register	Write

15

Stages	of	Execution	on	Datapath

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1.	Instruction
Fetch

2.	Decode/
Register
Read

3.	Execute 4.	Memory 5.	Register
Write

PC

16

Stages	of	Execution	(1/5)

• There	is	a	wide	variety	of	MIPS	instructions:	so	
what	general	steps	do	they	have	in	common?

• Stage	1:	Instruction	Fetch
– no	matter	what	the	instruction,	the	32-bit	
instruction	word	must	first	be	fetched	from	
memory	(the	cache-memory	hierarchy)

– also,	this	is	where	we	Increment	PC	
(that	is,	PC	=	PC	+	4,	to	point	to	the	next	
instruction:	byte	addressing	so	+	4)

17

Stages	of	Execution	(2/5)
• Stage	2:	Instruction	Decode

– upon	fetching	the	instruction,	we	next	gather	data	
from	the	fields	(decode	all	necessary	instruction	
data)

– first,	read	the	opcode to	determine	instruction	
type	and	field	lengths

– second,	read	in	data	from	all	necessary	registers
• for	add,	read	two	registers
• for	addi,	read	one	register
• for	jal,	no	reads	necessary

18

Stages	of	Execution	(3/5)
• Stage	3:	ALU	(Arithmetic-Logic	Unit)

– the	real	work	of	most	instructions	is	done	here:	
arithmetic	(+,	-,	*,	/),	shifting,	logic	(&,	|),	
comparisons	(slt)

– what	about	loads	and	stores?
• lw $t0,	40($t1)
• the	address	we	are	accessing	in	memory	=	the	
value	in	$t1 PLUS	the	value	40

• so	we	do	this	addition	in	this	stage
19

Stages	of	Execution	(4/5)

• Stage	4:	Memory	Access
– actually	only	the	load	and	store	instructions	do	
anything	during	this	stage;	the	others	remain	idle	
during	this	stage	or	skip	it	all	together

– since	these	instructions	have	a	unique	step,	we	
need	this	extra	stage	to	account	for	them

– as	a	result	of	the	cache	system,	this	stage	is	
expected	to	be	fast

20

Stages	of	Execution	(5/5)

• Stage	5:	Register	Write
– most	instructions	write	the	result	of	some	
computation	into	a	register

– examples:	arithmetic,	logical,	shifts,	loads,	slt
– what	about	stores,	branches,	jumps?

• don’t	write	anything	into	a	register	at	the	end
• these	remain	idle	during	this	fifth	stage	or	skip	it	all	
together

21

Stages	of	Execution	on	Datapath

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1.	Instruction
Fetch

2.	Decode/
Register
Read

3.	Execute 4.	Memory 5.	Register
Write

PC

22

Datapath	Walkthroughs	(1/3)

• add	$r3,$r1,$r2	#	r3	=	r1+r2
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	an	add,	
then	read	registers	$r1 and	$r2

– Stage	3:	add	the	two	values	retrieved	in	Stage	2
– Stage	4:	idle	(nothing	to	write	to	memory)
– Stage	5:	write	result	of	Stage	3	into	register	$r3

23

in
st

ru
ct

io
n

m
em

or
y

+4
re

gi
st

er
s

ALU

D
at

a
m

em
or

y

imm

2
1
3

reg[1]	+ reg[2]

reg[2]

reg[1]

Example:	add	Instruction
PC

add	r3,	r1,	r2

24

Datapath	Walkthroughs	(2/3)
• slti $r3,$r1,17	
#	if	(r1	<17)	r3	=	1	else	r3	=	0	
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	an	slti,	
then	read	register	$r1

– Stage	3:	compare	value	retrieved	in	Stage	2	
with	the	integer	17

– Stage	4:	idle
– Stage	5:	write	the	result	of	Stage	3	(1	if	reg source	
was	less	than	signed	immediate,	0	otherwise)	into	
register	$r3

25

in
st

ru
ct

io
n

m
em

or
y

+4
re

gi
st

er
s

ALU

D
at

a
m

em
or

y

imm

3
1
x

reg[1] < 17?

17

reg[1]

Example:	slti Instruction
PC

slti	r3,	r1,	17

26

Datapath	Walkthroughs	(3/3)

• sw $r3,16($r1)	#	Mem[r1+16]=r3
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	a	sw,	
then	read	registers	$r1 and	$r3

– Stage	3:	add	16 to	value	in	register	$r1 (retrieved	in	
Stage	2)	to	compute	address

– Stage	4:	write	value	in	register	$r3 (retrieved	in	
Stage	2)	into	memory	address	computed	in	Stage	3

– Stage	5:	idle	(nothing	to	write	into	a	register)

27

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

3
1
x

reg[1] +	16

16

reg[1]

MEM[r1+17]	= r3

reg[3]

Example:	sw Instruction
PC

sw r3,	16(r1)

28

Why	Five	Stages?	(1/2)

• Could	we	have	a	different	number	of	stages?
– Yes,	other	ISAs	have	different	natural	number	of	
stages
• And	these	days,	pipelining	can	be	much	more	
aggressive	than	the	"natural"	5	stages	MIPS	uses

• Why	does	MIPS	have	five	if	instructions	tend	
to	idle	for	at	least	one	stage?
– Five	stages	are	the	union	of	all	the	operations	
needed	by	all	the	instructions.

– One	instruction	uses	all	five	stages:	the	load
29

Why	Five	Stages?	(2/2)
• lw $r3,16($r1)	#	r3=Mem[r1+16]

– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	a	lw,
then	read	register	$r1

– Stage	3:	add	16 to	value	in	register	$r1 (retrieved	
in	Stage	2)

– Stage	4:	read	value	from	memory	address	
computed	in	Stage	3

– Stage	5:	write	value	read	in	Stage	4	into	
register	$r3

30

ALU

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

D
at

a
m

em
or

y

imm

3
1
x

reg[1] +	16
reg[1]

MEM[r1+16]

Example:	lw Instruction
PC

lw r3,	17(r1)

31

16

Clickers/Peer	Instruction

• Which	type	of	MIPS	instruction	is	active	in	the	
fewest	stages?

A:	LW
B:	BEQ
C:	J
D:	JAL
E:	ADDU

32

Processor	Design:	5	steps
Step	1:	Analyze	instruction	set	to	determine datapath
requirements

– Meaning	of	each	instruction	is	given	by	register	transfers
– Datapath must	include	storage	element	for	ISA	registers
– Datapath must	support	each	register	transfer
Step	2:	Select	set	of	datapath components	&	establish	
clock	methodology

Step	3:	Assemble	datapath components	that	meet	the	
requirements

Step	4:	Analyze	implementation	of	each	instruction	to	
determine	setting	of	control	points	that	realizes	the	
register	transfer

Step	5:	Assemble	the	control	logic
33

• All	MIPS	instructions	are	32	bits	long.		3	formats:

– R-type

– I-type

– J-type

• The	different	fields	are:
– op:	operation	(“opcode”)	of	the	instruction
– rs,	rt,	rd:	the	source	and	destination	register	specifiers
– shamt:	shift	amount
– funct:	selects	the	variant	of	the	operation	in	the	“op”	field
– address	/	immediate:	address	offset	or	immediate	value
– target	address:	target	address	of	jump	instruction	

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits

The	MIPS	Instruction	Formats

34

• ADDU	and	SUBU
– addu rd,rs,rt
– subu rd,rs,rt

• OR	Immediate:
– ori rt,rs,imm16

• LOAD	and	
STORE	Word
– lw rt,rs,imm16
– sw rt,rs,imm16

• BRANCH:
– beq rs,rt,imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

The	MIPS-lite	Subset

35

• Colloquially	called	“Register	Transfer	Language”
• RTL	gives	the	meaning of	the	instructions
• All	start	by	fetching	the	instruction	itself
{op , rs , rt , rd , shamt , funct} ← MEM[PC]

{op , rs , rt , Imm16} ← MEM[PC]

Inst Register Transfers

ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4

SUBU R[rd] ← R[rs] – R[rt]; PC ← PC + 4

ORI R[rt] ← R[rs] | zero_ext(Imm16); PC ← PC + 4

LOAD R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4

STORE MEM[R[rs] + sign_ext(Imm16)] ← R[rt]; PC ← PC + 4

BEQ if (R[rs] == R[rt])
PC ← PC + 4 + {sign_ext(Imm16), 2’b00}

else PC ← PC + 4

Register	Transfer	Level	(RTL)

36

In	Conclusion

• “Divide	and	Conquer”	to	build	complex	logic	
blocks	from	smaller	simpler	pieces	(adder)

• Five	stages	of	MIPS	instruction	execution
• Mapping	instructions	to	datapath components
• Single	long	clock	cycle	per	instruction

37

