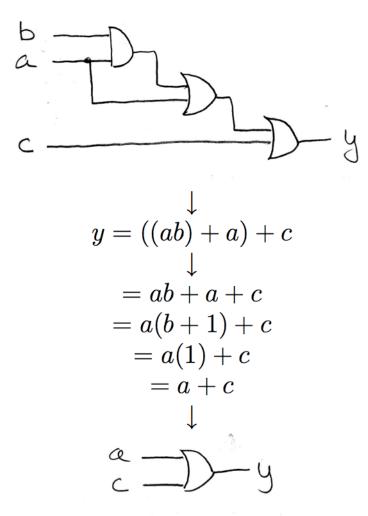

CS 61C:

Great Ideas in Computer Architecture Sequential Elements, Synchronous Digital Systems


Instructors:

Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.Berkeley.edu/~cs61c/sp16

Levels of Representation/Interpretation

Boolean Algebra: Circuit & Algebraic Simplification

original circuit

equation derived from original circuit

algebraic simplification

simplified circuit

Laws of Boolean Algebra

$X \overline{X} = 0$	$X + \overline{X} = 1$
X O = O	X + 1 = 1
X 1 = X	X + O = X
X X = X	X + X = X
X Y = Y X	X + Y = Y + X
(X Y) Z = Z (Y Z)	(X + Y) + Z = Z + (Y + Z)
X (Y + Z) = X Y + X Z	X + Y Z = (X + Y) (X + Z)
X Y + X = X	(X + Y) X = X
$\overline{X}Y + X = X + Y$	$(\overline{X} + Y) X = X Y$
$\overline{XY} = \overline{X} + \overline{Y}$	$\overline{X + Y} = \overline{X} \overline{Y}$

Complementarity Laws of 0's and 1's Identities Idempotent Laws Commutativity Associativity Distribution **Uniting Theorem** Uniting Theorem v. 2 DeMorgan's Law

Boolean Algebraic Simplification Example

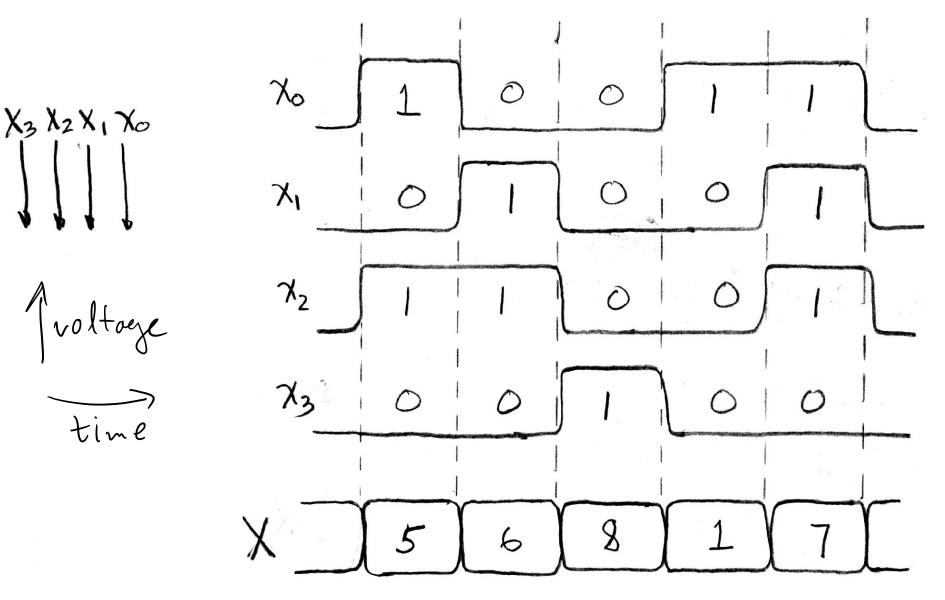
y = ab + a + c

. .

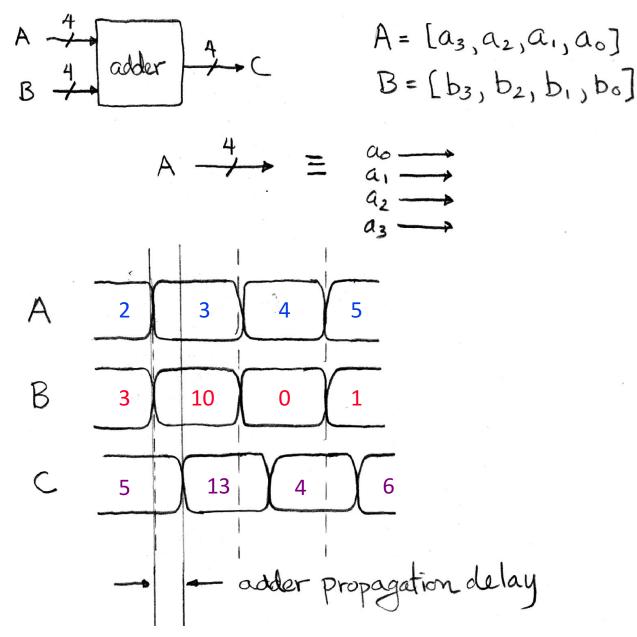
Boolean Algebraic Simplification Example

$$y = ab + a + c$$

= a(1) + c


= a + c

= a(b+1) + c


- abcy
- 0000
- 0011
- 0100
- 0111
- 1001
- 1011
- 1101
- 1111

distribution, identity law of 1's identity

Signals and Waveforms: Grouping

Signals and Waveforms: Circuit Delay

Sample Debugging Waveform

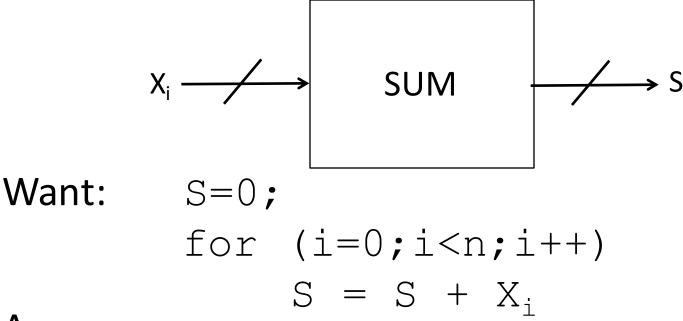
<mark>∰</mark> wave – default <u>F</u> ile <u>E</u> dit <u>C</u> ursor <u>Z</u> oom <u>B</u> ookm	ark F <u>o</u> rma	t <u>W</u> indow													_ 8
🗃 🖬 🖨 🕴 👗 🖻 🛍 🕴 🔔 .	🔉 T c 🚽	「 ⊕ ((e, Q, Q	. <mark>.</mark>x (1. 1.	K								
🧶 /tb/DBG_00[10]	St0														
/tb/DBG_00[9]	St0														
/tb/DBG_00[8]	St0														
🥥 /tb/DBG_00[7]	St1														
🧶 /tb/DBG_00[6]	St0			1											
🥙 /tb/DBG_00[5]	St0														
🥙 /tb/DBG_00[4]	St0														
🥙 /tb/DBG_00[3]	St0														
🥑 /tb/DBG_00[2]	St0														
/tb/DBG_00[1]	St0														
/tb/DBG_00[0]	St0	пп	ΠΠ		ΠΠ	ΠΠ	ΠΠ	ΠΠ	ΠΠ		ΠΠ	ΠΠ	ΠΠ		Π
⊡/tb/A	0000	003	4.1fef	0035.0	038 00	36 003	8,0037	0038		003	9.1fee	003a	fee 00	3b,1fe	:d
œ-∥ /tb/IB	3a	3a				3e									
œ-⊘ /tb/ROMAD	0000	1fef		0038					1	fee			X1	fed	
⊡- ⊘ <u>/tb/D</u>	ff	<u> </u>									00	ff		39	
⊡-@ /tb/TState	0	2	3	: 1 2				3 4	5 (2			3 (1	2	
🥘 /tb/0E_n	St0														
/tb/RAMCS_n	St1														
<pre>/tb/ROMCS_n</pre>	St0														
⊘ /tb/₩E_n	St1 St0														
⊘ /tb/X_0E_n ⊘ /tb/X_RAMCS_n	Stu St1														L
<pre>/tb/X_ROMCS_n</pre>	St0			╞╎┝┤				H							
/tb/ReadVRAM	St0														
 /tb/CSyncX 	St0														
	0 ps		us		Dius	10	2 us		4 us		Sus	10	8 us		Dius
•	0 ps														
96986540 ps to 111169300 j															

Clickers/Peer Instruction

• Simplify $Z = A + BC + \overline{A}(\overline{BC})$

- A: Z = 0
- B: $Z = \overline{A(1 + BC)}$
- C: Z = (A + BC)
- D: Z = BC
- E: Z = 1

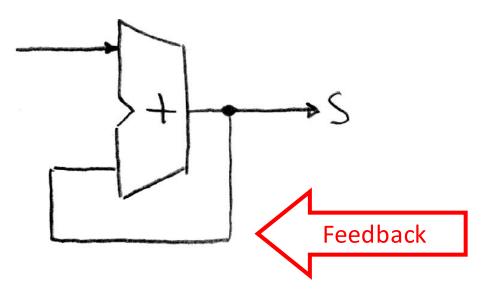
Type of Circuits


- *Synchronous Digital Systems* consist of two basic types of circuits:
 - Combinational Logic (CL) circuits
 - Output is a function of the inputs only, not the history of its execution
 - E.g., circuits to add A, B (ALUs)
 - Sequential Logic (SL)
 - Circuits that "remember" or store information
 - aka "State Elements"
 - E.g., memories and registers (Registers)

Uses for State Elements

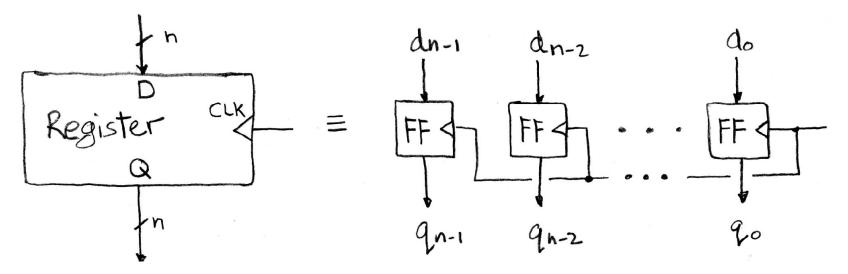
- Place to store values for later re-use:
 - Register files (like \$1-\$31 in MIPS)
 - Memory (caches and main memory)
- Help control flow of information between combinational logic blocks
 - State elements hold up the movement of information at input to combinational logic blocks to allow for orderly passage

Accumulator Example


Why do we need to control the flow of information?

Assume:

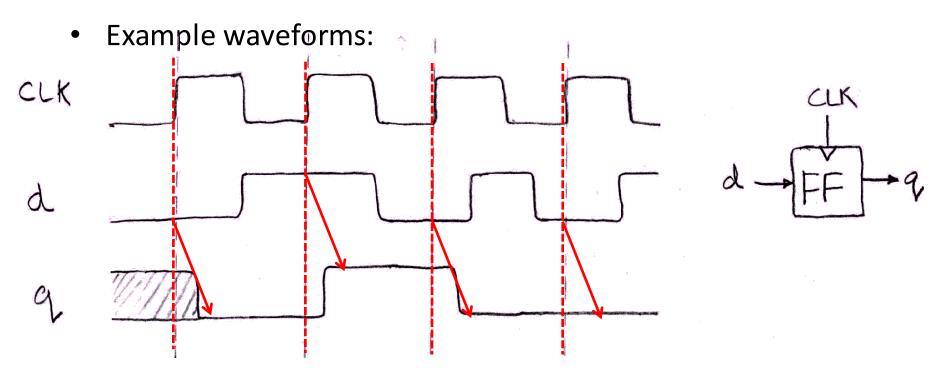
- Each X value is applied in succession, one per cycle
- After n cycles the sum is present on S


First Try: Does this work?

No!

Reason #1: How to control the next iteration of the 'for' loop? Reason #2: How do we say: 'S=0'?

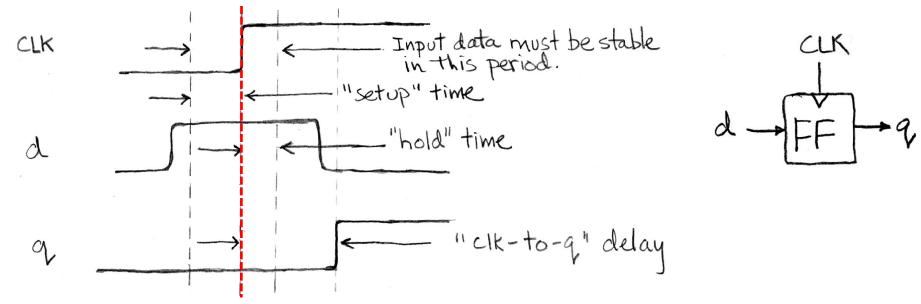
Register Internals



- n instances of a "Flip-Flop"
- Flip-flop name because the output flips and flops between 0 and 1
- D is "data input", Q is "data output"
- Also called "D-type Flip-Flop"

Flip-Flop Operation

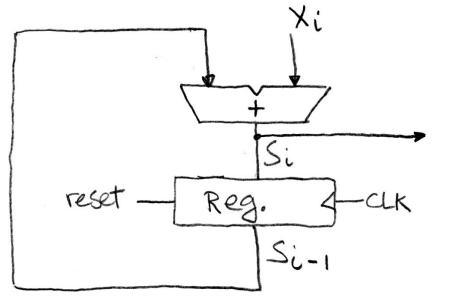
- Edge-triggered d-type flip-flop


 This one is "positive edge-triggered"
- "On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored."

Flip-Flop Timing

- Edge-triggered d-type flip-flop

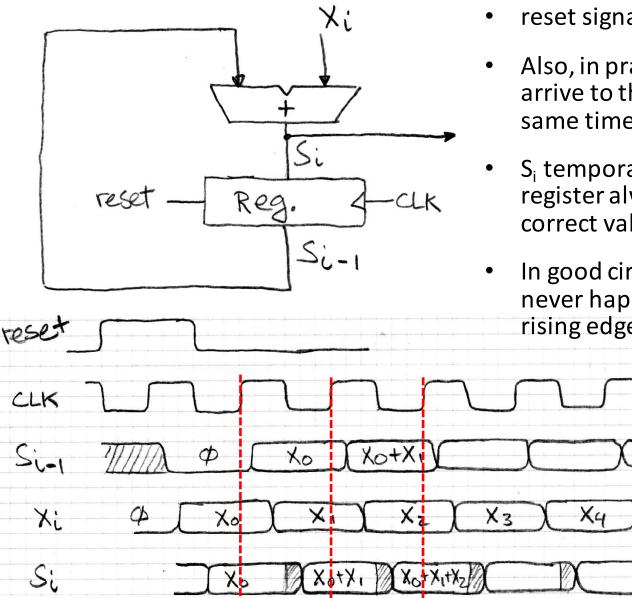
 This one is "positive edge-triggered"
- "On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored."
- Example waveforms (more detail):


Camera Analogy Timing Terms

- Want to take a portrait timing right before and after taking picture
- Set up time don't move since about to take picture (open camera shutter)
- Hold time need to hold still after shutter opens until camera shutter closes
- *Time click to data* time from open shutter until can see image on output (viewscreen)

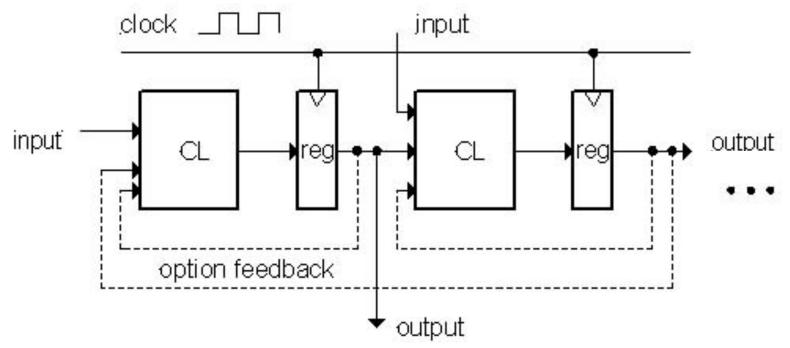

Hardware Timing Terms

- Setup Time: when the input must be stable before the edge of the CLK
- Hold Time: when the input must be stable after the edge of the CLK
- "CLK-to-Q" Delay: how long it takes the output to change, measured from the edge of the CLK


Accumulator Timing 1/2

- Reset input to register is used to force it to all zeros (takes priority over D input).
- S_{i-1} holds the result of the ith-1 iteration.
- Analyze circuit timing starting at the output of the register.

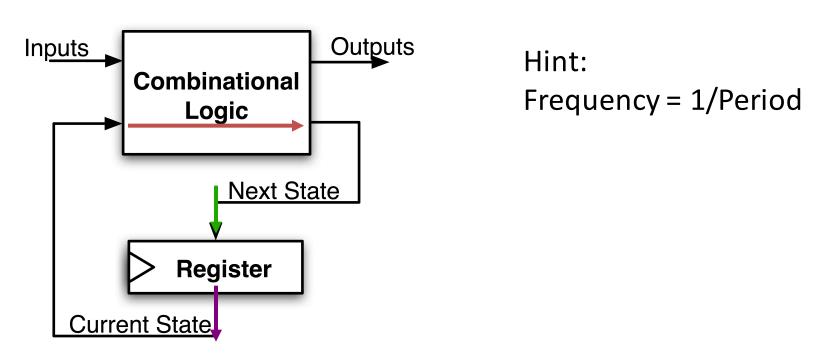
Accumulator Timing 2/2



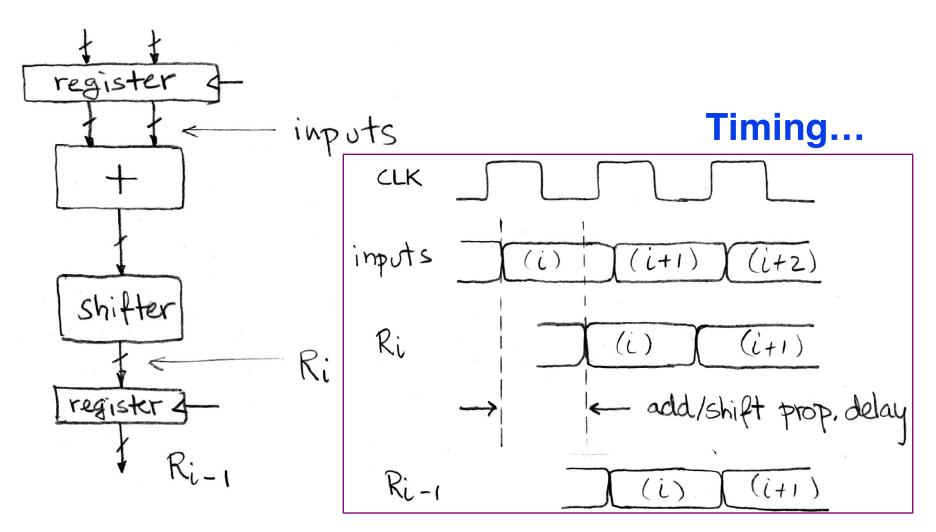
- reset signal shown.
- Also, in practice X might not arrive to the adder at the same time as S_{i-1}
- S_i temporarily is wrong, but register always captures correct value.
- In good circuits, instability never happens around rising edge of clk.

Ladd

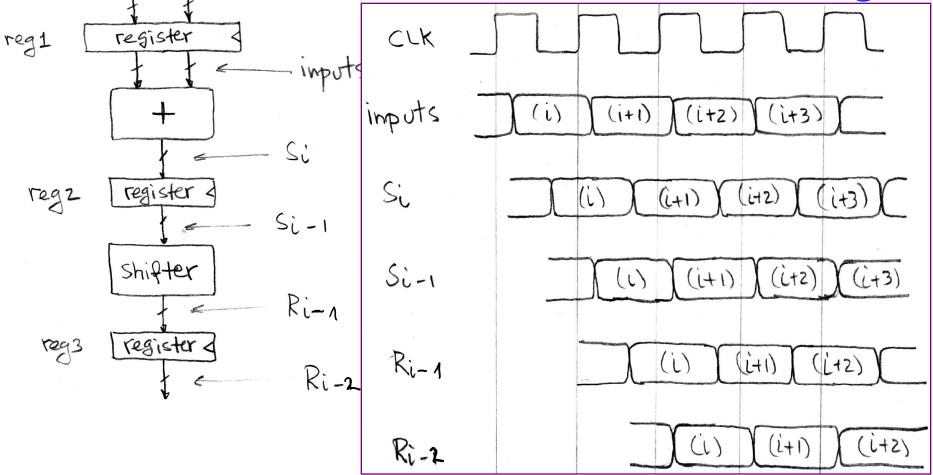
LCLK-TO-9


Model for Synchronous Systems

- Collection of Combinational Logic blocks separated by registers
- Feedback is optional
- Clock signal(s) connects only to clock input of registers
- Clock (CLK): steady square wave that synchronizes the system
- Register: several bits of state that samples on rising edge of CLK (positive edge-triggered) or falling edge (negative edge-triggered)


Maximum Clock Frequency

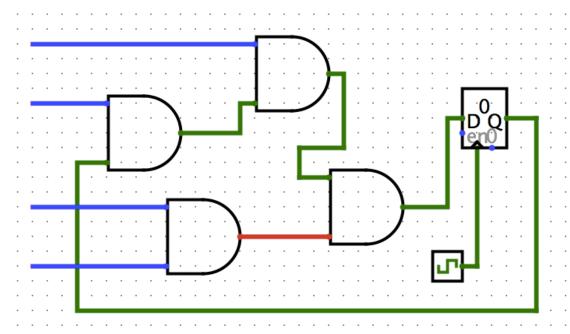
• What is the maximum frequency of this circuit?


Period = Max Delay = CLK-to-Q Delay + CL Delay + Setup Time

Critical Paths

Note: delay of 1 clock cycle from input to output. Clock period limited by propagation delay of adder/shifter.

Pipelining to improve performance Timing...



- Insertion of register allows higher clock frequency
- More outputs per second (higher bandwidth)
- But each individual result takes longer (greater latency)

Recap of Timing Terms

- Clock (CLK) steady square wave that synchronizes system
- Setup Time when the input must be stable <u>before</u> the rising edge of the CLK
- Hold Time when the input must be stable <u>after</u> the rising edge of the CLK
- "CLK-to-Q" Delay how long it takes the output to change, measured from the rising edge of the CLK
- Flip-flop one bit of state that samples every rising edge of the CLK (positive edge-triggered)
- Register several bits of state that samples on rising edge of CLK or on LOAD (positive edge-triggered)

Clickers/Peer Instruction

Clock->Q 1ns Setup 1ns Hold 1ns AND delay 1ns

What is maximum clock frequency? (assume all unconnected inputs come from some register)

- A: 5 GHz
- B: 200 MHz
- C: 500 MHz
- D: 1/7 GHz
- E: 1/6 GHz

Administrivia

- No lecture on Wed study for midterm
- Midterm 1 is on Thu 2/25
 - Time 6-8pm
 - Location
 - 2050 VLSB(aa-lz)
 - 1 Pimentel(ma-zz)
 - Covers up to and including 02/17 lecture (CALL 2)
 - 1 handwritten, double sided, 8.5"x11" cheat sheet
 We'll give you MIPS green sheet
- Emails sent-out to students requiring special accommodation for the exam please respond

Study Advice

- 1. Review slides, book, worksheets, etc. and add to your cheatsheet as you do so
 - a. <u>This step is not the end</u>
- 2. Take a mock exam in the allotted time, using only your cheatsheet
- 3. Go over solutions, look at *why* the answers are what they are (especially for questions you answered incorrectly)
- 4. Update cheatsheet as necessary
- 5. if (!perfect) goto 2;