
CS	61C:	
Great	Ideas	in	Computer	Architecture	

MIPS	Instruction	Formats

1

Instructors:
Vladimir	Stojanovic	and	Nicholas	Weaver
http://inst.eecs.Berkeley.edu/~cs61c/sp16

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

2

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Instruction	Formats

• I-format:	used	for	instructions	with	
immediates,	lw and	sw (since	offset	counts	as	
an	immediate),	and	branches	(beq and	bne)	
– (but	not	the	shift	instructions;	later)

• J-format:	used	for	j and	jal
• R-format:	used	for	all	other	instructions
• It	will	soon	become	clear	why	the	instructions	
have	been	partitioned	in	this	way

3

R-Format	Instructions	(1/5)

• Define	“fields”	of	the	following	number	of	bits	
each:	6	+	5	+	5	+	5	+	5	+	6	=	32

• For	simplicity,	each	field	has	a	name:

• Important:	On	these	slides	and	in	book,	each	field	is	
viewed	as	a	5- or	6-bit	unsigned	integer,	not	as	part	of	a	
32-bit	integer
– Consequence:	5-bit	fields	can	represent	any	number	0-31,	while	

6-bit	fields	can	represent	any	number	0-63

6 5 5 5 65

opcode rs rt rd functshamt

4

R-Format	Example	(1/2)
• MIPS	Instruction:

add $8,$9,$10

opcode =	0	(look	up	in	table	in	book)
funct =	32	(look	up	in	table	in	book)
rd =	8	(destination)
rs =	9	(first	operand)
rt =	10	(second	operand)
shamt =	0	(not	a	shift)

5

R-Format	Example	(2/2)
• MIPS	Instruction:

add $8,$9,$10
Decimal	number	per	field	representation:

Binary	number	per	field	representation:

hex	representation:	 012A 4020hex

Called	a	Machine	Language	Instruction

0 9 10 8 320

000000 01001 01010 01000 10000000000
hex

6

opcode rs rt rd functshamt

I-Format	Instructions	(1/2)
• Define	“fields”	of	the	following	number	of	bits	each:	
6	+	5	+	5	+	16	=	32	bits

– Again,	each	field	has	a	name:

– Key	Concept:	Only	one	field	is	inconsistent	with	R-format.		
Most	importantly,	opcode is	still	in	same	location.

6 5 5 16

opcode rs rt immediate

7

I-Format	Instructions	(2/2)
• The	Immediate	Field:
– addi,	slti,	sltiu,	the	immediate	is	sign-
extended to	32	bits.		Thus,	it’s	treated	as	a	
signed	integer.

– 16	bits	è can	be	used	to	represent	immediate	
up	to	216 different	values

– This	is	large	enough	to	handle	the	offset	in	a	
typical	lw or	sw,	plus	a	vast	majority	of	values	
that	will	be	used	in	the	slti instruction.

– Later,	we’ll	see	what	to	do	when	a	value	is	too	
big	for	16	bits

8

I-Format	Example	(1/2)
• MIPS	Instruction:

addi $21,$22,-50

opcode =	8	(look	up	in	table	in	book)
rs =	22	(register	containing	operand)
rt =	21	(target	register)
immediate =	-50	(by	default,	this	is	decimal	in	
assembly	code)

9

I-Format	Example	(2/2)
• MIPS	Instruction:

addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex

10

Clicker/Peer	Instruction
Which	instruction	has	same	representation	as	integer	35ten?

a) add	$0,	$0,	$0
b) subu $s0,$s0,$s0
c) lw $0,	0($0)
d) addi $0,	$0,	35
e) subu $0,	$0,	$0

Registers	numbers	and	names:	
0:	$0,	..	8:	$t0,	9:$t1,	..15:	$t7,	16:	$s0,	17:	$s1,	..	23:	$s7	

Opcodes	and	function	fields:
add:	opcode =	0,	funct =	32
subu:	opcode =	0,	funct =	35
addi:	opcode =	8
lw:	opcode =	35

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt

11

Branching	Instructions

• beq and	bne
– Need	to	specify	a	target	address	if	branch	taken
– Also	specify	two	registers	to	compare

• Use	I-Format:

– opcode specifies	beq (4)	vs.	bne (5)
– rs and	rt specify	registers
– How	to	best	use	immediate to	specify	
addresses?

12

opcode rs rt immediate
31 0

Branching	Instruction	Usage

• Branches	typically	used	for	loops	(if-else,	
while,	for)
– Loops	are	generally	small	(<	50	instructions)
– Function	calls	and	unconditional	jumps	handled	
with	jump	instructions	(J-Format)

• Recall: Instructions	stored	in	a	localized	area	
of	memory	(Code/Text)
– Largest	branch	distance	limited	by	size	of	code
– Address	of	current	instruction	stored	in	the	
program	counter	(PC)

13

PC-Relative	Addressing

• PC-Relative	Addressing: Use	the	immediate
field	as	a	two’s	complement	offset	to	PC
– Branches	generally	change	the	PC	by	a	small	
amount

– Can	specify	± 215 addresses	from	the	PC

14

Branch	Calculation

• If	we	don’t take	the	branch:
– PC = PC + 4 = next	instruction

• If	we	do take	the	branch:
– PC = (PC+4) + (immediate*4)

• Observations:
– immediate is	number	of	instructions	to	jump	
(remember,	specifies	words)	either	forward	(+)	or	
backwards	(–)

– Branch	from	PC+4 for	hardware	reasons;	will	be	
clear	why	later	in	the	course

15

Branch	Example	(1/2)

• MIPS	Code:
Loop: beq $9,$0,End

addu $8,$8,$10
addiu $9,$9,-1
j Loop

End:

• I-Format	fields:
opcode =	4 (look	up	on	Green	Sheet)
rs =	9 (first	operand)
rt =	0 (second	operand)
immediate =	???

16

Start	counting	from	
instruction	AFTER	the	
branch

1
2
3

3

Branch	Example	(2/2)

• MIPS	Code:
Loop: beq $9,$0,End

addu $8,$8,$10
addiu $9,$9,-1
j Loop

End:

Field	representation	(decimal):

Field	representation	(binary):

17

4 9 0 3
31 0

000100 01001 00000 0000000000000011
31 0

Questions	on	PC-addressing

• Does	the	value	in	branch	immediate	field	
change	if	we	move	the	code?
– If	moving	individual	lines	of	code,	then	yes
– If	moving	all	of	code,	then	no

• What	do	we	do	if	destination	is	>	215
instructions	away	from	branch?
– Other	instructions	save	us
– beq $s0,$0,far bne $s0,$0,next
next instr à j far

next: # next instr
18

J-Format	Instructions	(1/4)

• For	branches,	we	assumed	that	we	won’t	want	
to	branch	too	far,	so	we	can	specify	a	change
in	the	PC

• For	general	jumps	(j and	jal),	we	may	jump	
to	anywhere in	memory
– Ideally,	we	would	specify	a	32-bit	memory	address	
to	jump	to

– Unfortunately,	we	can’t	fit	both	a	6-bit	opcode
and	a	32-bit	address	into	a	single	32-bit	word

19

J-Format	Instructions	(2/4)

• Define	two	“fields”	of	these	bit	widths:

• As	usual,	each	field	has	a	name:

• Key	Concepts:
– Keep	opcode field	identical	to	R-Format	and	
I-Format	for	consistency

– Collapse	all	other	fields	to	make	room	for	large	
target	address 20

6 26
31 0

opcode target address
31 0

J-Format	Instructions	(3/4)

• We	can	specify	226 addresses
– Still	going	to	word-aligned	instructions,	so	add	0b00
as	last	two	bits	(multiply	by	4)

– This	brings	us	to	28	bits	of	a	32-bit	address

• Take	the	4	highest	order	bits	from	the	PC
– Cannot	reach	everywhere,	but	adequate	almost	all	of	
the	time,	since	programs	aren’t	that	long

– Only	problematic	if	code	straddles	a	256MB	boundary
• If	necessary,	use	2	jumps	or	jr (R-Format)	
instead

21

J-Format	Instructions	(4/4)

• Jump	instruction:
– New	PC	=	{ (PC+4)[31..28],	target	address,	00	}

• Notes:	
– {	,	,	}	means	concatenation
{	4	bits	,	26	bits	,	2	bits	}	=	32	bit	address
• Book	uses	||	instead

– Array	indexing:		[31..28]	means	highest	4	bits
– For	hardware	reasons,	use	PC+4	instead	of	PC

22

MAL	vs.	TAL

• True	Assembly	Language	(TAL)
– The	instructions	a	computer	understands	and	
executes

• MIPS	Assembly	Language	(MAL)
– Instructions	the	assembly	programmer	can	use
(includes	pseudo-instructions)

– Each	MAL	instruction	becomes	1	or	more	TAL	
instruction

23

Assembler	Pseudo-Instructions
• Certain	C	statements	are	implemented	
unintuitively	in	MIPS
– e.g.	assignment	(a=b)	via	add	$zero

• MIPS	has	a	set	of	“pseudo-instructions”	to	make	
programming	easier
– More	intuitive	to	read,	but	get	translated	into	actual	
instructions	later

• Example:
move dst,src

translated	into
add dst,src,$zero

24

Assembler	Pseudo-Instructions

• List	of	pseudo-instructions:		
http://en.wikipedia.org/wiki/MIPS_architecture#Pseudo_instructions

– List	also	includes	instruction	translation
• Load	Address	(la)
– la dst,label
– Loads	address	of	specified	label	into	dst

• Load	Immediate (li)
– li dst,imm
– Loads	32-bit	immediate	into	dst

• MARS	has	additional	pseudo-instructions
– See	Help	(F1)	for	full	list

25

Assembler	Register

• Problem:
–When	breaking	up	a	pseudo-instruction,	the	
assembler	may	need	to	use	an	extra	register

– If	it	uses	a	regular	register,	it’ll	overwrite	whatever	
the	program	has	put	into	it

• Solution:
– Reserve	a	register	($1 or	$at for	“assembler	
temporary”)	that	assembler	will	use	to	break	up	
pseudo-instructions

– Since	the	assembler	may	use	this	at	any	time,	it’s	
not	safe	to	code	with	it

26

Dealing	With	Large	Immediates

• How	do	we	deal	with	32-bit	immediates?
– Sometimes	want	to	use	immediates >	± 215 with	
addi,	lw,	sw and	slti

– Bitwise	logic	operations	with	32-bit	immediates

• Solution:		Don’t	mess	with	instruction	
formats,	just	add	a	new	instruction

• Load	Upper	Immediate (lui)
– lui reg,imm
– Moves	16-bit	imm into	upper	half	(bits	16-31)	of	
reg and	zeros	the	lower	half	(bits	0-15)

27

lui Example

• Want:			addiu $t0,$t0,0xABABCDCD
– This	is	a	pseudo-instruction!

• Translates	into:
lui $at,0xABAB # upper 16
ori $at,$at,0xCDCD # lower 16
addu $t0,$t0,$at # move

• Now	we	can	handle	everything	with	a	16-bit	
immediate!

28

Only	the	assembler	gets	to	use	$at	($1)

Clicker	Question

Which	of	the	following	place	the	address	of	
LOOP	in	$v0?
1) la $t1, LOOP

lw $v0, 0($t1)

2) jal LOOP
LOOP: addu $v0, $ra, $zero

3) la $v0, LOOP

29

1 2 3
A)T, T, T
B)T, T, F
C)F, T, T
D)F, T, F
E)F, F, T

Administrivia
• Project	2-1	is	out	– start	early

• HW1	(ungraded)	C-to-MIPS	practice	problems	
(due	02/14	@	23:59:59)
– Will	help	you	a	lot	with	the	midterm	so	don’t	skip

• Piazza	Etiquette
– Please	don’t	post	code.	We	do	not	debug	over	piazza.	
Come	to	OH	instead!

– Search	through	other	posts,	FAQs	before	posting	a	
question

30

Integer	Multiplication	(1/3)

• Paper	and	pencil	example	(unsigned):
Multiplicand 1000 8
Multiplier x1001 9

1000
0000
0000

+1000
01001000 72

• m bits	x n bits	=	m +	n bit	product
31

Integer	Multiplication	(2/3)

• In	MIPS,	we	multiply	registers,	so:
– 32-bit	value	x 32-bit	value	=	64-bit	value

• Syntax	of	Multiplication	(signed):
– mult register1,	register2
– Multiplies	32-bit	values	in	those	registers	&	puts	
64-bit	product	in	special	result	registers:
• puts	product	upper	half	in	hi,	lower	half	in	lo

– hi and	lo are	2	registers	separate	from	the	32	
general	purpose	registers

– Use	mfhi register	&	mflo register	to	move	
from	hi,	lo to	another	register

32

Integer	Multiplication	(3/3)
• Example:
– in	C: a = b * c;
– in	MIPS:

• let	b be	$s2;	let	c be	$s3;	and	let	a be	$s0 and	
$s1 (since	it	may	be	up	to	64	bits)

mult $s2,$s3 # b*c
mfhi $s0 # upper half of

product into $s0
mflo $s1 # lower half of

product into $s1
• Note:	Often,	we	only	care	about	the	lower	
half	of	the	product
– Pseudo-inst.	mul expands	to	mult/mflo

33

Integer	Division	(1/2)

• Paper	and	pencil	example	(unsigned):
1001 Quotient

Divisor 1000|1001010 Dividend
-1000

10
101
1010

-1000
10 Remainder

(or Modulo result)

• Dividend	=	Quotient	x Divisor	+	Remainder
34

Integer	Division	(2/2)
• Syntax	of	Division	(signed):

– div register1,	register2
– Divides	32-bit	register	1	by	32-bit	register	2:	
– puts	remainder	of	division	in	hi,	quotient	in	lo

• Implements	C	division	(/)	and	modulo	(%)

• Example	in	C: a = c / d; b = c % d;

• in	MIPS:	a↔$s0; b↔$s1; c↔$s2; d↔$s3
div $s2,$s3 # lo=c/d, hi=c%d

mflo $s0 # get quotient
mfhi $s1 # get remainder

35

Summary
• I-Format: instructions	with	immediates,	
lw/sw (offset	is	immediate),	and	beq/bne
– But	not	the	shift	instructions
– Branches	use	PC-relative	addressing

• J-Format: j and	jal (but	not	jr)
– Jumps	use	absolute	addressing

• R-Format: all	other	instructions

36

opcode rs rt immediateI:

opcode target addressJ:

opcode functrs rt rd shamtR:

