
CS	61C:	
Great	Ideas	in	Computer	Architecture	
Intro	to	Assembly	Language,	MIPS	Intro

1

Instructors:
Vladimir	Stojanovic &	Nicholas	Weaver

http://inst.eecs.Berkeley.edu/~cs61c/sp16

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

2

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Assembly	Language

• Basic	job	of	a	CPU:	execute	lots	of	instructions.
• Instructions	are	the	primitive	operations	that	the	
CPU	may	execute.
• Different	CPUs	implement	different	sets	of	
instructions.		The	set	of	instructions	a	particular	
CPU	implements	is	an	
Instruction	Set	Architecture (ISA).
– Examples:	ARM,	Intel	x86,	MIPS,	RISC-V,	
IBM/Motorola	PowerPC	(old	Mac),	Intel	IA64	(aka	
Itanic),	...

3

Instruction	Set	Architectures
• Early	trend	was	to	add	more	and	more	instructions	
to	new	CPUs	to	do	elaborate	operations
– VAX	architecture	had	an	instruction	to	multiply	
polynomials!

• RISC	philosophy	(Cocke IBM,	Patterson,	Hennessy,	
1980s)	–
Reduced	Instruction	Set	Computing
– Keep	the	instruction	set	small	and	simple,	makes	it	
easier	to	build	fast	hardware.

– Let	software	do	complicated	operations	by	composing	
simpler	ones.

4

Berkeley	Acknowledge	for	the	first	
RISC	computer

5

From	RISC-I	to	RISC-V

6

EECS151/251A,	CS152,	CS250,	CS252	use	RISC-V

MIPS	Architecture
•MIPS	– semiconductor	company	that	built	one	of	the	first	
commercial	RISC	architectures
•We	will	study	the	MIPS	architecture	in	some	detail	in	this	
class	(also	used	in	upper	division	courses.		When	an	upper	
division	course	uses	RISC-V	instead,	the	ISA	is	very	similar)
•Why	MIPS	instead	of	Intel	x86?

– MIPS	is	simple,	elegant.		Don’t	want	to	get	bogged	down	in	
gritty	details.

– MIPS	widely	used	in	embedded	apps,	x86	little	used	in	
embedded,	and	more	embeded computers	than	PCs

• Why	MIPS	instead	of	ARM?
– Accident	of	history:	Patterson	&	Hennesey is	in	MIPS
– MIPS	also	designed	more	for	performance	than	ARM,	ARM	is	

instead	designed	for	small	code	size

7

Assembly	Variables:	Registers

• Unlike	HLL	like	C	or	Java,	assembly	cannot	use	
variables
–Why	not?	Keep	Hardware	Simple

• Assembly	Operands	are	registers
– Limited	number	of	special	locations	built	directly	
into	the	hardware

– Operations	can	only	be	performed	on	these!
• Benefit:	Since	registers	are	directly	in	
hardware,	they	are	very	fast	
(faster	than	1	ns	- light	travels	30cm	in	1	ns!!!)

8

Number	of	MIPS	Registers

• Drawback:	Since	registers	are	in	hardware,	
there	are	a	predetermined	number	of	them
– Solution:	MIPS	code	must	be	very	carefully	put	
together	to	efficiently	use	registers

• 32	registers	in	MIPS
–Why	32?	Smaller	is	faster,	but	too	small	is	bad.	
Goldilocks	problem.

– X86	has	many	fewer	registers
• Each	MIPS	register	is	32	bits	wide
– Groups	of	32	bits	called	a	word in	MIPS

9

Names	of	MIPS	Registers

• Registers	are	numbered	from	0	to	31
• Each	register	can	be	referred	to	by	number	or	name
• Number	references:
–$0,	$1,	$2,	…	$30,	$31

• For	now:
– $16	- $23è $s0	- $s7 (correspond	to	C	variables)
– $8	- $15 è $t0	- $t7 (correspond	to	temporary	variables)
– Later	will	explain	other	16	register	names

• In	general,	use	names	to	make	your	code	more	
readable

10

C,	Java	variables	vs.	registers

• In	C	(and	most	High	Level	Languages)	variables	
declared	first	and	given	a	type
• Example:		 int fahr, celsius;

char a, b, c, d, e;

• Each	variable	can	ONLY	represent	a	value	of	
the	type	it	was	declared	as	
(cannot	mix	and	match	int and	char variables).
• In	Assembly	Language,	registers	have	no	type;	
operation determines	how	register	contents	are	
treated

11

Addition	and	Subtraction	of	Integers

• Addition	in	Assembly
– Example: add $s0,$s1,$s2 (in	MIPS)
– Equivalent	to: a	=	b	+	c	 (in	C)
where		C	variables	⇔MIPS	registers	are:

a	⇔ $s0,	b	⇔ $s1,	c	⇔ $s2	
• Subtraction	in	Assembly
– Example: sub $s3,$s4,$s5 (in	MIPS)
– Equivalent	to: d	=	e	- f	 (in	C)
where		C	variables	⇔MIPS	registers	are:

d	⇔ $s3,	e	⇔ $s4,	f	⇔ $s5	

12

Addition	and	Subtraction	of	Integers	
Example	1

• How	to	do	the	following	C	statement?
a	=	b	+	c	+	d	- e;

• Break	into	multiple	instructions
add $t0, $s1, $s2 # temp = b + c
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

• A	single	line	of	C	may	break	up	into	several	lines	of	
MIPS.
• Notice	the	use	of	temporary	registers	– don’t	want	to	
modify	the	variable	registers	$s
• Everything	after	the	hash	mark	on	each	line	is	ignored	
(comments)

13

Immediates
• Immediates are	numerical	constants
• They	appear	often	in	code,	so	there	are	special	
instructions	for	them
• Add	Immediate:

addi $s0,$s1,-10 (in	MIPS)
f	=	g	- 10	 (in	C)

where	MIPS	registers	$s0,$s1 are	associated	with	
C	variables	f,	g

• Syntax	similar	to	add instruction,	except	that	
last	argument	is	a	number	instead	of	a	register

add $s0,$s1,$zero (in	MIPS)
f	=	g	 (in	C)

14

Overflow in Arithmetic
• Reminder: Overflow occurs when there
is a “mistake” in arithmetic due to the
limited precision in computers.
• Example (4-bit unsigned numbers):

15 1111
+ 3 + 0011
18 10010

• But we don’t have room for 5-bit
solution, so the solution would be 0010,
which is +2, and “wrong”.

15

Overflow handling in MIPS
• Some	languages	detect	overflow	(Ada),	
some	don’t	(most	C	implementations)
•MIPS	solution	is	2	kinds	of	arithmetic	instructions:
– These	cause	overflow	to	be	detected

• add	(add)
• add	immediate	(addi)	
• subtract	(sub)

– These	do	not	cause	overflow	detection	
• add	unsigned	(addu)
• add	immediate	unsigned	(addiu)	
• subtract	unsigned	(subu)

• Compiler	selects	appropriate	arithmetic
–MIPS	C	compilers	produce	addu,	addiu,	subu

16

Processor

Control

Datapath

Data	Transfer:
Load	from	and	Store	to memory

17

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	Data		=	
Store	to	
memory

Read	Data	=	
Load	from
memory

Processor-Memory	 Interface I/O-Memory	Interfaces

Program

Data

0
1
2
3
…

Memory	Addresses	are	in	Bytes

• Lots	of	data	is	smaller	than	32	bits,	but	rarely	
smaller	than	8	bits	– works	fine	if	everything	is	a	
multiple	of	8	bits

• 8	bit	chunk	is	called	a	byte
(1	word	=	4	bytes)

• Memory	addresses	are	really
in	bytes,	not	words

• Word	addresses	are	4	bytes	
apart	
– Word	address	is	same	as	address	of	
leftmost	byte	– most	significant	byte
(i.e.	Big-endian	convention)	

0
4
8
12
…

1
5
9
13
…

2
6
10
14
…

3
7
11
15
…

Most	significant	byte	in	a	word

18

Transfer	from Memory	to	Register
• C	code

int A[100];
g = h + A[3];

• Using	Load	Word	(lw)	in	MIPS:
lw $t0,12($s3) #	Temp	reg $t0	gets	A[3]
add $s1,$s2,$t0 #	g	=	h	+	A[3]

Note:	 $s3 – base	register	(pointer)
12 – offset	in	bytes

Offset	must	be	a	constant	known	at	assembly	time

19

0
4
8
12
…

1
5
9
13
…

2
6
10
14
…

3
7
11
15
…

Transfer	from	Register	to Memory
• C	code

int A[100];
A[10] = h + A[3];

• Using	Store	Word	(sw)	in	MIPS:
lw $t0,12($s3) #	Temp	reg $t0	gets	A[3]
add $t0,$s2,$t0 #	Temp	reg $t0	gets	h	+	A[3]
sw $t0, 40($s3) #	A[10]	=	h	+	A[3]

Note:	 $s3 – base	register	(pointer)
12,40 – offsets	in	bytes

$s3+12	and	$s3+40	must	be	multiples	of	4:	Word	alignment!
20

Loading and Storing bytes
• In	addition	to	word	data	transfers	
(lw,	sw),	MIPS	has	byte	data	transfers:
– load	byte:	lb
– store	byte:	sb

• Same	format	as	lw,	sw
• E.g.,		lb $s0, 3($s1)
– contents	of	memory	location	with	address	=	sum	
of	“3”	+	contents	of	register	$s1 is	copied	to	the	low	
byte	position	of	register	$s0.

byte
loaded

zzz zzzzx

…is copied to “sign-extend”
This bit

xxxx xxxx xxxx xxxx xxxx xxxx$s0:

21

Speed	of	Registers	vs.	Memory

• Given	that	
– Registers:	32	words	(128	Bytes)
– Memory:	Billions	of	bytes	(2	GB	to	8	GB	on	laptop)

• and	the	RISC	principle	is…
– Smaller	is	faster

• How	much	faster	are	registers	than	memory??
• About	100-500	times	faster!
– in	terms	of	latency	of	one	access

22

Administrivia
• Hopefully	everyone	turned-in	HW0

• Project	1	out	– due	02/07	@	23:59:59
– Make	sure	you	test	your	code	on	hive	machines,	that’s	where	

we’ll	grade	them!
This	is	critical: Your	“lucky”	not-crash	due	to	a	memory	error	on	
your	machine	may	not	be	“lucky	not	crash”	on	our	grading

• Bitbucket/edX forms
– Fill	out	@	http://goo.gl/forms/AiKsGIieIP
– Due	2/12/16

• Guerrilla	sections	starting soon
– Look	for	Piazza	post	and	webpage	schedule	update

23

How	many	hours	h	on	Homework	0?

A:	0	≤	h	<	5
B:	5	≤	h	<	10
C:	10	≤	h	<	15
D:	15	≤	h	<	20
E:	20	≤	h

24

Clickers/Peer Instruction
We want to translate *x = *y +1 into MIPS
(x, y pointers stored in: $s0 $s1)

A: addi $s0,$s1,1

B: lw $s0,1($s1)
sw $s1,0($s0)

C: lw $t0,0($s1)
addi $t0,$t0,1
sw $t0,0($s0)

D: sw $t0,0($s1)
addi $t0,$t0,1
lw $t0,0($s0)

E: lw $s0,1($t0)
sw $s1,0($t0)

25

MIPS	Logical	Instructions

Logical
operations

C
operators

Java
operators

MIPS
instructions

Bit-by-bit AND & & and
Bit-by-bit OR | | or
Bit-by-bit NOT ~ ~ not
Shift left << << sll
Shift right >> >>> srl

26

• Useful	to	operate	on	fields	of	bits	within	a	word	
− e.g.,	characters	within	a	word	(8	bits)

• Operations	to	pack	/unpack	bits	into	words
• Called	logical	operations

Logic Shifting
• Shift	Left:	sll $s1,$s2,2 #s1=s2<<2
– Store	in	$s1 the	value	from	$s2 shifted	2	bits	to	the	
left	(they	fall	off	end),	inserting	0’s on	right;	<<	in	C.
Before:		0000	0002hex
0000	0000	0000	0000	0000	0000	0000	0010two
After:	 0000	0008hex
0000	0000	0000	0000	0000	0000	0000	1000two

What	arithmetic	effect	does	shift	left	have?

• Shift	Right:	srl is	opposite	shift;	>>

27

Arithmetic	Shifting
• Shift	right	arithmetic	moves	n bits	to	the	right	
(insert	high	order	sign	bit	into	empty	bits)

• For	example,	if	register	$s0	contained
1111	1111	1111	1111	1111	1111	1110	0111two=	-25ten

• If	executed	sra $s0,	$s0,	4,	result	is:
1111	1111	1111	1111	1111	1111	1111	1110two=	-2ten

• Unfortunately,	this	is	NOT	same	as	dividing	by	2n
− Fails	for	odd	negative	numbers
− C	arithmetic	semantics	is	that	division	should	round	towards	0

28

And	In	Conclusion	…
• Computer	words	and	vocabulary	are	called	instructions	
and	instruction	set	respectively

• MIPS	is	example	RISC	instruction	set	in	this	class
• Rigid	format:	1	operation,	2	source	operands,	1	
destination
– add,sub,mul,div,and,or,sll,srl,sra
– lw,sw,lb,sb to	move	data	to/from	registers	from/to	
memory

– beq, bne, j, slt, slti for	decision/flow	control
• Simple	mappings	from	arithmetic	expressions,	array	
access,	if-then-else	in	C	to	MIPS	instructions

29

