CS 61C:
Great Ideas in Computer Architecture
C Memory Management, Usage

Models

Instructors:
Nicholas Weaver & Vladimir Stojanovic
http://inst.eecs.Berkeley.edu/~cs61c/spl6

Pointer Ninjitsu:
Pointers to Functions

You have a function definition

— char *foo(char *a, int b){ .. }
Can create a pointer of that type...
—char *(*f) (char *, int);

e Declaresf as a function taking a char * andan int and
returninga char *

Can assign to it
—f = &foo

* Create areference to function foo
And can then call it..

—printf(“%s\n”, (*f)(“cat”, 3))

Managing the Heap

C supports functions for heap management:

* malloc() allocate ablock of uninitialized memory
* calloc () allocate a block of zeroed memory
e free() free previously allocated block of memory

* realloc () change size of previously allocated block
e careful — it might move!

Observations

* Code, Static storage are easy: they never grow
or shrink

e Stack space is relatively easy: stack frames are

created and destroyed in last-in, first-out
(LIFO) order

* Managing the heap is tricky: memory can be
allocated / deallocated at any time

How are Malloc/Free implemented?

* Underlying operating system allows malloc
library to ask for large blocks of memory to
use in heap (e.g., using Unix sbrk () call)

e Cstandardmalloc library creates data
structure inside unused portions to track free

space

Simple Slow Malloc Implementation

Initial Empty Heap space from Operating System

el

Free Space

~

Malloc library creates linked list of empty blocks (one block initially)

[

—

Ld

Object 1

Free

N

First allocation chews up space from start of free space

[

—~

= 7

—

After many mallocs and frees, have potentially long linked list of odd-sized blocks
Frees link block back onto linked list — might merge with neighboring free space

Clicker Question

 What will the following print:

— int a, b, c, *d;
0;

1;

2;

&aj;

) += b + c;
&b;
(*d) +=

*
Qi

QL~Q00w

o))
o° +
o
i+

— A)a=0, b=3
— B) a=3,b=3
— C)a=3, b=4
— D) a=3, b=7
— E) I love pointersand am havinga friend borrow my clicker

Administrivia...

* Project 1 should be out...

— Getting 80%: Working on “correctly formatted”
input should be straightforward

e But be sure to test far more exhaustively than the
provided test case

— Getting 100% will be considerably harder...
* Alot of corner cases you need to consider

Faster malloc implementations

* Keep separate pools of blocks for different
sized objects

* “Buddy allocators” always round up to power-
of-2 sized chunks to simplify finding correct
size and merging neighboring blocks:

6 y
6

2.1
2 .
| 2
| 2.3 ’
2.4 .
2.5
| 51 22
52
| 71 23
7.2 23
8 23
| 9.1 23
| 9.2 23
9 23
3
9.4 . 23
23 23
23
23
22 23
23
23
23
23
23

| 9.5
24

Malloc Implementations

All provide the same library interface, but can
have radically different implementations

Uses headers at start of allocated blocks and/or
space in unallocated memory to hold malloc’s
internal data structures

Rely on programmer remembering to free with
same pointer returned bymalloc

Rely on programmer not messing with internal
data structures accidentally!

— Ifyou get a crash inmalloc, it means that
somewhere else you wrote off the end of an array

Common Memory Problems

Using uninitialized values
— Especially bad to use uninitialized pointers

Using memory that you don’t own

— Deallocated stack or heap variable

— Out-of-bounds reference to stack or heap array
— Using NULL or garbage data as a pointer

Improper use of free/realloc by messing with the
pointer handle returned by malloc/calloc

Memory leaks (you allocated something you
forgot to later free)

Using Memory You Don’t Own
 What is wrong with this code?

int *ipr, *ipw;
void ReadMem() {
int i, Jj;
ipr = (int *) malloc(4 * sizeof(int));

i = *(ipr - 1000); j = *(ipr + 1000);
free(ipr);

}

void WriteMem() {
ipw = (int *) malloc(5 * sizeof(int));

*(ipw - 1000) = 0; *(ipw + 1000) = 0;
free(ipw);

}

13

Using Memory You Don’t Own

Using pointersbeyond the range that had been malloc’d

— May look obvious, but what if mem refs had been result of pointer
arithmeticthat erroneously took them out of the allocated range?

int *ipr, *ipw;
void ReadMem() {
int i, J;
ipr = (int *) malloc(4 * sizeof(int));
i = *(ipr - 1000); j = *(ipr + 1000);
/* Hopefully no crash, but remember Heartbleed? */
free(ipr);

}

void WriteMem() {
ipw = (int *) malloc(5 * sizeof(int));
*(ipw - 1000) = 0; *(ipw + 1000) = O;
/* If you are lucky.. It will crash right here. */
free(ipw);

14

Faulty Heap Management

 What is wrong with this code?

int *pi;
void foo() {
pi = malloc(8*sizeof(int));

free(pi);

}

void main() {
pli = malloc(4*sizeof(int));
foo();

15

Faulty Heap Management

* Memory leak: more mallocs than frees

int *pi;
void foo() {
pi = malloc(8*sizeof(int));
/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */

free(pi);
}
void main() {
pi = malloc(4*sizeof(int));
foo(); /* Memory leak: foo leaks it */

16

Faulty Heap Management

 What is wrong with this code?

int *plk = NULL;
void genPLK() {
plk = malloc(2 * sizeof(int));

17

Faulty Heap Management

e Potential memory leak — handle (block
pointer) has been changed, do you still have
copy of it that can correctly be used in a later

free?

int *plk = NULL;
void genPLK() {
plk = malloc(2 * sizeof(int));
plk++; /* Potential leak: pointer variable
incremented past beginning of block!
So how can you free it later?*/

18

Faulty Heap Management

 What is wrong with this code?

void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY () {
int *fum = malloc(4 * sizeof(int));
free(fum+1l);
free(fum);
free(fum);

}

19

Faulty Heap Management

 Can’t free non-heap memory; Can’t free memory that
hasn’t been allocated

void FreeMemX() {

int £fnh = 0;

free(&fnh); /* Oops! freeing stack memory. If lucky.. */
}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+l);
/* fum+l is not a proper handle; points to middle
of a block. If lucky.. */
free(fum);
free(fum);
/* Oops! Attempt to free already freed memory. If lucky..*/

20

Using Memory You Haven’t Allocated

 What is wrong with this code?

volid StringManipulate() {
const char *name = “Safety Critical”;
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
printf("%$s\n", str);

21

Using Memory You Haven’t Allocated
* Reference beyond array bounds

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';

/* Write Beyond Array Bounds. If you are
lucky.. (Nick wasn’t in 60c...) */

printf("%s\n", str);
/* Read Beyond Array Bounds */

22

Using Memory You Don’t Own

 What’s wrong with this code?

char *append(const char* sl, const char *s2) {

const int MAXSIZE = 128;

char result[128];

int i=0, J=0;

for (Jj=0; 1<MAXSIZE-1 && Jj<strlen(sl);
result[i] = sl[]];

}

for (j=0; i<MAXSIZE-1 && j<strlen(s2);
result[i] = s2[]];

}

result[++i] = '\0';

return result;

i++,§++) {

i++,§++) {

23

Using Memory You Don’t Own

* Beyond stack read/write

char *append(const char* sl, const char *s2) {
const int MAXSIZE = 128;

char result[128];

int i=0, j=0;

resultisalocal array name —

stack memory allocated

for (Jj=0; 1i<MAXSIZE-1 && j<strlen(sl); i++,]++) {
result[i] = s1[]];

}

for (Jj=0; 1i<MAXSIZE-1 && j<strlen(s2); i++,J++) {
result[i] = s2[]];

}

result[++i] =
return result;

'\O';

\

Function returns pointer to stack
memory —won’t be valid after
function returns

24

Using Memory You Don’t Own

 What is wrong with this code?

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {
head = head->next;

}

return head->val;

25

Using Memory You Don’t Own

* Following a NULL pointerto mem addr O!

typedef struct node {
struct node* next;

int val;
} Node;
int findLastNodeValue(Node* head) {
while (head->next != NULL) {
/* What if head happens to be NULL? */
head = head->next;
}

return head->val; /* What if head is NULL? */
} /* In general, assume that your functions will be
called incorrectly, so explicitly check inputs rather
than rely on the caller checking inputs */

26

Managing the Heap

* realloc(p,size):
— Resize a previously allocated block at pto a new size
— If pis NULL, then realloc behaves like malloc

— Ifsizeis 0,then realloc behaves like free, deallocating the block from the
heap

— Returns new address of the memory block; NOTE: it is likely to have moved!
E.g.: allocate an array of 10 elements, expand to 20 elements later

int *ip;

ip = (int *) malloc(10*sizeof(int));

/* always check for ip == NULL */

ip = (int *) realloc(ip,20*sizeof(int));

/* always check for ip == NULL */

/* contents of first 10 elements retained */

realloc(ip,0); /* identical to free(ip) */
27

Using Memory You Don’t Own

* Whatis wrong with this code?

int* init array(int *ptr, int new size) {
ptr = realloc(ptr, new size*sizeof(int));
memset (ptr, 0, new size*sizeof(int));
return ptr;

}

int* fill fibonacci(int *fib, int size) ({
int 1i;
init array(fib, size);
/* £ib[0] = 0; */ fib[1l] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

28

Using Memory You Don’t Own

* Improper matched usage of mem handles

int* init array(int *ptr, int new size) {

}

ptr = realloc(ptr, new size*sizeof(int));
memset (ptr, O0,\new size*sizeof(int));
return ptr;

Remember: real10c may move entire block

int* fill fibonacci(int *fib, int size) ({

int 1i;

/* oops, forgot: fib = */ init array(fib, size);

/* £ib[0] = 0; */ fib[1l] = 1;

for (i=2; i<size; i++) What if array is moved to
fib[i] = fib[i-1] + fib[i-2]; new location?

return fib;

29

Valgrind..

Debugging memory problemsin Cis a right-royal-massive-
unpritable-profine-pain-in-the-rear!

— Cdoesn’tjustlet youshootyourselfinthe foot, but gives you an AK-

47, pointsitdownward, and invites you to starts spraying...

— Many of the crashes do not occur where you make your mistakes!
Valgrind is a tool which runs your program (much much much more
Slf?WII(y) in a way which checks memoryaccesses and performs other
checks

— http://valgrind.org/docs/manual/quick-start.html
It is not perfect
— Rare false positives
— Some large class false negatives
— Andtest input must trigger the erroneous read or write

And In Conclusion, ...

* C has three main memory segments in which
to allocate data:

— Static Data: Variables outside functions
— Stack: Variables local to function
— Heap: Objects explicitly malloc-ed/free-d.

 Heap data is biggest source of bugs in C code

