
CS	61C:	
Great	Ideas	in	Computer	Architecture	

C	Memory	Management,	Usage	
Models
Instructors:

Nicholas	Weaver	&	Vladimir	Stojanovic
http://inst.eecs.Berkeley.edu/~cs61c/sp16

1

Pointer	Ninjitsu:	
Pointers	to	Functions

• You	have	a	function	definition
– char *foo(char *a, int b){ … }

• Can	create	a	pointer	of	that	type…
– char *(*f)(char *, int);

• Declares	f	as	a	function	taking	a	char	*	and	an	int and	
returning	a	char	*

• Can	assign	to	it
– f = &foo

• Create	a	reference	to	function	foo
• And	can	then	call	it..
– printf(“%s\n”, (*f)(“cat”, 3))

2

Managing	the	Heap
C	supports	functions	for	heap	management:

• malloc() allocate	a	block	of	uninitialized	memory
• calloc() allocate	a	block	of	zeroed	memory
• free() free	previously	allocated	block	of	memory
• realloc() change	size	of	previously	allocated	block
• careful	– it	might	move!

3

Observations

• Code,	Static	storage	are	easy:	they	never	grow	
or	shrink

• Stack	space	is	relatively	easy:	stack	frames	are	
created	and	destroyed	in	last-in,	first-out	
(LIFO)	order

• Managing	 the	heap	is	tricky:	memory	can	be	
allocated	/	deallocated at	any	time

4

How	are	Malloc/Free	implemented?

• Underlying	operating	system	allows	malloc
library	to	ask	for	large	blocks	of	memory	to	
use	in	heap	(e.g.,	using	Unix	sbrk() call)

• C	standard	malloc library	creates	data	
structure	inside	unused	portions	to	track	free	
space

5

Simple	Slow	Malloc Implementation

6

Initial	Empty	Heap	space	from	Operating	System

Free	Space

Malloc library	creates	linked	 list	of	empty	blocks	(one	block	initially)

FreeObject	1

Free

First	allocation	chews	up	space	from	start	of	free	space

After	many	mallocs and	frees,	have	potentially	long	 linked	 list	of	odd-sized	blocks
Frees	link	block	back	onto	 linked	 list	– might	merge	with	neighboring	 free	space

Clicker	Question
• What	will	the	following	print:

– int a, b, c, *d;
a = 0;
b = 1;
c = 2;
d = &a;
(*d) += b + c;
d = &b;
(*d) += a + b + c;
printf(“a=%i b=%i\n”, a, b);

– A)	a=0,	b=3
– B)	a=3,	b=3
– C)	a=3,	b=4
– D)	a=3,	b=7
– E)	I	love	pointers	and	am	having	a	friend	borrow	my	clicker

7

Administrivia…

• Project	1	should	be	out…
– Getting	80%:	Working	on	“correctly	formatted”	
input	should	be	straightforward
• But	be	sure	to	test	far	more	exhaustively	than	the	
provided	test	case

– Getting	100%	will	be	considerably	harder...
• A	lot	of	corner	cases	you	need	to	consider

8

Faster	malloc implementations

• Keep	separate	pools	of	blocks	for	different	
sized	objects

• “Buddy	allocators”	always	round	up	to	power-
of-2	sized	chunks	to	simplify	finding	correct	
size	and	merging	neighboring	blocks:

9

Power-of-2	“Buddy	Allocator”

10

Malloc Implementations
• All	provide	the	same	library	interface,	but	can	
have	radically	different	implementations

• Uses	headers	at	start	of	allocated	blocks	and/or	
space	in	unallocated	memory	to	hold	malloc’s
internal	data	structures

• Rely	on	programmer	remembering	to	free	with	
same	pointer	returned	by	malloc

• Rely	on	programmer	not	messing	with	internal	
data	structures	accidentally!
– If	you	get	a	crash	in	malloc,	it	means	that	
somewhere	else you	wrote	off	the	end	of	an	array

11

Common	Memory	Problems
• Using	uninitialized	values
– Especially	bad	to	use	uninitialized	pointers

• Using	memory	that	you	don’t	own
– Deallocated stack	or	heap	variable
– Out-of-bounds	reference	to	stack	or	heap	array
– Using	NULL	or	garbage	data	as	a	pointer

• Improper	use	of	free/realloc by	messing	with	the	
pointer	handle	returned	by	malloc/calloc

• Memory	leaks	(you	allocated	something	you	
forgot	to	later	free)

12

Using	Memory	You	Don’t	Own
• What	is	wrong	with	this	code?

int *ipr, *ipw;
void ReadMem() {

int i, j;
ipr = (int *) malloc(4 * sizeof(int));
i = *(ipr - 1000); j = *(ipr + 1000);
free(ipr);

}

void WriteMem() {
ipw = (int *) malloc(5 * sizeof(int));
*(ipw - 1000) = 0; *(ipw + 1000) = 0;
free(ipw);

}

13

Using	Memory	You	Don’t	Own
• Using	pointers	beyond	the	range	that	had	been	malloc’d

– May	look	obvious,	but	what	if	mem refs	had	been	result	of	pointer	
arithmetic	that	erroneously	took	them	out	of	the	allocated	range?

int *ipr, *ipw;
void ReadMem() {

int i, j;
ipr = (int *) malloc(4 * sizeof(int));
i = *(ipr - 1000); j = *(ipr + 1000);
/* Hopefully no crash, but remember Heartbleed? */
free(ipr);

}

void WriteMem() {
ipw = (int *) malloc(5 * sizeof(int));
*(ipw - 1000) = 0; *(ipw + 1000) = 0;
/* If you are lucky… It will crash right here. */
free(ipw);

}

14

Faulty	Heap	Management

• What	is	wrong	with	this	code?
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
…
free(pi);

}

void main() {
pi = malloc(4*sizeof(int));
foo();
…

}

15

Faulty	Heap	Management

• Memory	leak:	more	mallocs than	frees
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */
…
free(pi);

}

void main() {
pi = malloc(4*sizeof(int));
foo(); /* Memory leak: foo leaks it */
…

}

16

Faulty	Heap	Management

• What	is	wrong	with	this	code?

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++;

}

17

Faulty	Heap	Management

• Potential	memory	leak	– handle	(block	
pointer)	has	been	changed,	do	you	still	have	
copy	of	it	that	can	correctly	be	used	in	a	later	
free?

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++; /* Potential leak: pointer variable
incremented past beginning of block!
So how can you free it later?*/

}

18

Faulty	Heap	Management

• What	is	wrong	with	this	code?
void FreeMemX() {

int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
free(fum);
free(fum);

}

19

Faulty	Heap	Management
• Can’t	free	non-heap	memory;	Can’t	free	memory	that	
hasn’t	been	allocated

void FreeMemX() {
int fnh = 0;
free(&fnh); /* Oops! freeing stack memory. If lucky… */

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
/* fum+1 is not a proper handle; points to middle
of a block. If lucky… */
free(fum);
free(fum);
/* Oops! Attempt to free already freed memory. If lucky…*/

}

20

Using	Memory	You	Haven’t	Allocated

• What	is	wrong	with	this	code?

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
printf("%s\n", str);

}

21

Using	Memory	You	Haven’t	Allocated

• Reference	beyond	array	bounds

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
/* Write Beyond Array Bounds. If you are
lucky… (Nick wasn’t in 60c...) */
printf("%s\n", str);
/* Read Beyond Array Bounds */

}

22

Using	Memory	You	Don’t	Own

23

• What’s	wrong	with	this	code?

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}

Using	Memory	You	Don’t	Own

24

• Beyond	stack	read/write

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}
Function	 returns	pointer	 to	stack	
memory	– won’t	be	valid	after	

function	 returns

result is	a	local	array	name	–
stack	memory	allocated

Using	Memory	You	Don’t	Own

• What	is	wrong	with	this	code?

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {

head = head->next;
}
return head->val;

}

25

Using	Memory	You	Don’t	Own
• Following	a	NULL	pointer	to	mem addr 0!

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {
/* What if head happens to be NULL? */

head = head->next;
}
return head->val; /* What if head is NULL? */

} /* In general, assume that your functions will be
called incorrectly, so explicitly check inputs rather
than rely on the caller checking inputs */

26

Managing	the	Heap
• realloc(p,size):

– Resize	a	previously	allocated	block	at	p to	a	new	size
– If	p is	NULL,	then	realloc behaves	like	malloc
– If	size is	0,	then	realloc behaves	like	free,	deallocating the	block	from	the	

heap
– Returns	new	address	of	the	memory	block;	NOTE:	it	is	likely	 to	have	moved!
E.g.:	allocate	an	array	of	10	elements,	expand	to	20	elements	later

int *ip;
ip = (int *) malloc(10*sizeof(int));
/* always check for ip == NULL */
… … …
ip = (int *) realloc(ip,20*sizeof(int));
/* always check for ip == NULL */
/* contents of first 10 elements retained */
… … …
realloc(ip,0); /* identical to free(ip) */

27

Using	Memory	You	Don’t	Own
• What	is	wrong	with	this	code?
int* init_array(int *ptr, int new_size) {

ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
28

Using	Memory	You	Don’t	Own
• Improper	matched	usage	of	mem handles
int* init_array(int *ptr, int new_size) {

ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
/* oops, forgot: fib = */ init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
29

What	if	array	is	moved	 to	
new	location?

Remember:	reallocmay	move	entire	block

Valgrind..
• Debugging	memory	problems	in	C	is	a	right-royal-massive-

unpritable-profine-pain-in-the-rear!
– C	doesn’t	just	let	you	shoot	yourself	in	the	foot,	but	gives	you	an	AK-

47,	points	it	downward,	and	invites	you	to	starts	spraying…
– Many	of	the	crashes	do	not	occurwhere	you	make	your	mistakes!

• Valgrind	is	a	tool	which	runs	your	program	(much	much	muchmore	
slowly)	in	a	way	which	checks	memory	accesses	and	performs	other	
checks
– http://valgrind.org/docs/manual/quick-start.html

• It	is	not	perfect
– Rare	false	positives
– Some	large	class	false	negatives
– And	test	input	must	trigger	the	erroneous	read	or	write

30

And	In	Conclusion,	…

• C	has	three	main	memory	segments	in	which	
to	allocate	data:
– Static	Data:	Variables	outside	functions
– Stack:	Variables	local	to	function
– Heap:		Objects	explicitly	malloc-ed/free-d.

• Heap	data	is	biggest	source	of	bugs	in	C	code

31

