
CS	61C:	
Great	Ideas	in	Computer	Architecture	

C	Pointers

Instructors:
Vladimir	Stojanovic	&	Nicholas	Weaver

http://inst.eecs.Berkeley.edu/~cs61c/sp16

1

Agenda

• Pointers
• Arrays	in	C

2

Address	vs.	Value
• Consider	memory	to	be	a	single	huge	array
– Each	cell	of	the	array	has	an	address	associated	
with	it

– Each	cell	also	stores	some	value
– For	addresses	do	we	use	signed	or	unsigned	
numbers?	Negative	address?!

• Don’t	confuse	the	address	referring	to	a	
memory	location	with	the	value	stored	there

3

23 42 101 102	103	104	105	...

Pointers
• An	address	refers	to	a	particular	memory	
location;	e.g.,	it	points	to	a	memory	location

• Pointer:	A	variable	that	contains	the	address	
of	a	variable

4

23 42 101	102	103	104	105	...

x y

Location	(address)

name
p

104

Pointer	Syntax

• int *p;
– Tells	compiler	that	variable	p is	address	of	an	int

• p = &y;
– Tells	compiler	to	assign	address	of	y to	p
– & called	the	“address	operator”	in	this	context

• z = *p;
– Tells	compiler	to	assign	value	at	address	in	p to	z
– * called	the	“dereference	operator”	in	this	context

5

Creating	and	Using	Pointers

6

• How	to	create	a	pointer:
& operator:	get	address	of	a	variable
int *p, x;

p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

•How	get	a	value	pointed	to?
“*” (dereference	operator):	get the	value	that	the	pointer	points	to

printf(“p points to %d\n”,*p);

Note	the	“*”	gets	used	
2	different	ways	in	this	
example.		In	the		
declaration	to	indicate	
that	p is	going	to	be	a	
pointer,		and	in	the	
printf to	get	the	
value	pointed	to	by	p.

Using	Pointer	for	Writes

• How	to	change	a	variable	pointed	to?
– Use	the	dereference	operator	* on	left	of	
assignment	operator	=

7

p x 5*p = 5;

p x 3

Pointers	and	Parameter	Passing
• Java	and	C	pass	parameters	“by	value”
– Procedure/function/method	gets	a	copy	of	the	
parameter,	so	changing	the	copy	cannot	change	the	
original

void add_one (int x) {
x = x + 1;

}
int y = 3;
add_one(y);

y remains	equal	to	3

8

Pointers	and	Parameter	Passing
• How	can	we	get	a	function	to	change	the	value	
held	in	a	variable?

void add_one (int *p) {
*p = *p + 1;
}

int y = 3;

add_one(&y);

y is	now	equal	to	4

9

Types	of	Pointers

• Pointers	are	used	to	point	to	any	kind	of	data	
(int,	char,	a	struct,	etc.)

• Normally	a	pointer	only	points	to	one	type	
(int,	char,	a	struct,	etc.).
– void * is	a	type	that	can	point	to	anything	
(generic	pointer)

– Use	void * sparingly	to	help	avoid	program	bugs,	
and	security	issues,	and	other	bad	things!

10

More	C	Pointer	Dangers
• Declaring	a	pointer	just	allocates	space	to	hold	
the	pointer	– it	does	not	allocate	the	thing	
being	pointed	to!

• Local	variables	in	C	are	not	initialized,	they	
may	contain	anything	(aka	“garbage”)

• What	does	the	following	code	do?

11

void f()
{

int *ptr;
*ptr = 5;

}

Pointers	and	Structures
typedef struct {

int x;
int y;

} Point;

Point p1;
Point p2;
Point *paddr;

/* dot notation */
int h = p1.x;
p2.y = p1.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr).x;

/* This works too */
p1 = p2;

12

Pointers	in	C
• Why	use	pointers?
– If	we	want	to	pass	a	large	struct or	array,	it’s	easier	/	
faster	/	etc.	to	pass	a	pointer	than	the	whole	thing

– In	general,	pointers	allow	cleaner,	more	compact	code

• So	what	are	the	drawbacks?
– Pointers	are	probably	the	single	largest	source	of	bugs	
in	C,	so	be	careful	anytime	you	deal	with	them
• Most	problematic	with	dynamic	memory	management—
coming	up	next	week

• Dangling	references	and	memory	leaks

13

Why	Pointers	in	C?
• At	time	C	was	invented	(early	1970s),	compilers	
often	didn’t	produce	efficient	code
– Computers	25,000	times	faster	today,	compilers	better

• C	designed	to	let	programmer	say	what	they	want	
code	to	do	without	compiler	getting	in	way
– Even	give	compilers	hints	which	registers	to	use!

• Today’s	compilers	produce	much	better	code,	so	
may	not	need	to	use	pointers	in	application	code

• Low-level	system	code	still	needs	low-level	access	
via	pointers

14

Video:	Fun	with	Pointers

• https://www.youtube.com/watch?v=6pmWoji
sM_E

15

Clickers/Peer	Instruction	Time
void foo(int *x, int *y)
{ int t;

if (*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

16

A:	a=3 b=2 c=1
B:	a=1 b=2 c=3
C:	a=1 b=3 c=2
D:	a=3 b=3 c=3
E:	a=1 b=1 c=1

Result	is:

Administrivia

• HW0	out,	due:	Sunday	1/31	@	11:59:59pm
• Give	paper	copy	of	mini-bio	to	your	TA
• Get	iClickers and	register	on	bCourses!	Participation	
points	start	today!

• People	with	university-related	time	conflict	with	
lectures	should	contact	the	head	GSIs.	We	will	waive	
the	clicker	points	but	need	to	document	conflict.

• Let	head	GSIs	know	about	exam	conflicts	by	the	end	
of	this	week

17

Agenda

• Pointers
• Arrays	in	C

18

C	Arrays

• Declaration:
int ar[2];
declares	a	2-element	integer	array:	just	a	block	of	
memory	

int ar[] = {795, 635};

declares	and	initializes	a	2-element	integer	array

19

C	Strings
• String	in	C	is	just	an	array	of	characters

char string[] = "abc";

• How	do	you	tell	how	long	a	string	is?
– Last	character	is	followed	by	a	0	byte	
(aka	“null	terminator”)

20

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Array	Name	/	Pointer	Duality
• Key	Concept:	Array	variable	is	a	“pointer”	to	the	first	
(0th)	element

• So,	array	variables	almost	identical	to	pointers
– char *string and	char string[] are	nearly	
identical	declarations

– Differ	in	subtle	ways:	incrementing,	declaration	of	filled	
arrays

• Consequences:
– ar is	an	array	variable,	but	works	like	a	pointer
– ar[0] is	the	same	as	*ar
– ar[2] is	the	same	as	*(ar+2)
– Can	use	pointer	arithmetic	to	conveniently	access	arrays

21

C	Arrays	are	Very	Primitive
• An	array	in	C	does	not	know	its	own	length,	and	its	bounds	

are	not	checked!
– Consequence:	We	can	accidentally	access	off	the	end	of	an	array
– Consequence:	We	must	pass	the	array	and	its	size	to	any	

procedure	that	is	going	to	manipulate	it
• Segmentation	faults	and	bus	errors:

– These	are	VERY	difficult	to	find;	
be	careful!	(You’ll	learn	how	to	debug	these	in	lab)

– But	also	“fun”	to	exploit:
• “Stack	overflow	exploit”,	maliciously	write	off	the	end	of	an	array	on	
the	stack

• “Heap	overflow	exploit”,	maliciously	write	off	the	end	of	an	array	on	
the	heap

22

Use	Defined	Constants
• Array	size	n;	want	to	access	from	0 to	n-1,	so	you	should	use	counter	AND	

utilize	a	variable	for	declaration	&	incrementation
– Bad	pattern

int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Better	pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE	SOURCE	OF	TRUTH
– You’re	utilizing	 indirection	and	avoiding	maintaining	two	copies	of	the	number	

10
– DRY:	“Don’t	Repeat	Yourself”
– And	don’t	 forget	the	< rather	than	<=:

When	Nick	took	60c,	he	lost	a	day	to	a	“segfault in	a	malloc called	by	printf on	
large	inputs”:	Had	a	<= rather	than	a	< in	a	single	array	initialization!

23

Pointing	to	Different	Size	Objects
• Modern	machines	are	“byte-addressable”

– Hardware’s	memory	composed	of	8-bit	storage	cells,	each	has	a	
unique	address

• A	C	pointer	is	just	abstracted	memory	address
• Type	declaration	tells	compiler	how	many	bytes	to	fetch	on	
each	access	through	pointer
– E.g.,	32-bit	integer	stored	in	4	consecutive	8-bit	bytes

24

424344454647484950515253545556575859

int *x

32-bit	integer	
stored	in	four	bytes

short *y

16-bit	short	stored	
in	two	bytes

char *z

8-bit	character	
stored	in	one	byte

Byte	address

sizeof()	operator

• sizeof(type)	returns	number	of	bytes	in	object
– But	number	of	bits	in	a	byte	is	not	standardized
• In	olden	times,	when	dragons	roamed	the	earth,	bytes	
could	be	5,	6,	7,	9	bits	long

• By	definition,	sizeof(char)==1
• Can	take	sizeof(arg),	or	sizeof(structtype)
• We’ll	see	more	of	sizeof when	we	look	at	
dynamic	memory	management

25

26

Pointer	Arithmetic
pointer +	number pointer – number
e.g.,	pointer + 1 adds	1	something to	a	pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In	each,	p now	points	to	b
(Assuming	compiler	doesn’t	
reorder	variables	in	memory.	
Never	code	like	this!!!!)

Adds	1*sizeof(char)
to	the	memory	address

Adds	1*sizeof(int)
to	the	memory	address

Pointer	arithmetic	should	be	used	cautiously

Changing	a	Pointer	Argument?

• What	if	want	function	to	change	a	pointer?
• What	gets	printed?

void inc_ptr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int* q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

Pointer	to	a	Pointer

• Solution!	Pass	a	pointer	to	a	pointer,	declared	
as	**h

• Now	what	gets	printed?
void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int* q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

And	In	Conclusion,	…
• All	data	is	in	memory

– Each	memory	location	has	an	address	to	use	to	refer	to	it	and	a	
value	stored	in	it

• Pointer	is	a	C	version	(abstraction)	of	a	data	address
– * “follows”	a	pointer	to	its	value
– & gets	the	address	of	a	value
– Arrays	and	strings	are	implemented	as	variations	on	pointers

• C	is	an	efficient	language,	but	leaves	safety	to	the	
programmer
– Variables	not	automatically	initialized
– Use	pointers	with	care:	they	are	a	common	source	of	bugs	in	

programs

29

