CS 61C:
Great Ideas in Computer Architecture
C Pointers

Instructors:
Vladimir Stojanovic & Nicholas Weaver
http://inst.eecs.Berkeley.edu/~cs61lc/spl6

Agenda

* Pointers

Address vs. Value

* Consider memory to be a single huge array
— Each cell of the array has an address associated
with it
— Each cell also stores some value

— For addresses do we use signed or unsigned
numbers? Negative address?!

* Don’t confuse the address referring to a
memory location with the value stored there

101102103104 105 ...
23 42

Pointers

* An address refers to a particular memory
location; e.g., it points to a memory location

e Pointer: A variable that contains the address
of a variable

Location (address) /\

101102103104 105 ...

23 42 104

B y i
name

Pointer Syntax

* 1int *p;

— Tells compiler that variable p is address of an int
*p = &y;

— Tells compiler to assign address of y to p

— & called the “address operator” in this context
*Z2 = *p;

— Tells compiler to assign value at addressin p to z

— * called the “dereference operator” in this context

Creating and Using Pointers

* How to create a pointer:

& operator: get address of a variable

: * .
int *p, Xx; i <|
x =3 pl ? x| 3

p = &x; / X
P x| 3

e How get a value pointed to?

Note the “*” gets used
2 different waysin this
example. Inthe
declaration toindicate
thatpis goingto bea
pointer, andinthe
printf toget the
value pointed to byp.

“*” (dereference operator): get the value that the pointer pointsto

printf(“p points to %d\n”, *p);

Using Pointer for Writes

* How to change a variable pointed to?

— Use the dereference operator * on left of
assignment operator =

P 3

5

7T
7T

Pointers and Parameter Passing

e Java and C pass parameters “by value”

— Procedure/function/method gets a copy of the
parameter, so changing the copy cannot change the
original

void add _one (int x) {
X =x + 1;
}

int y = 3;
add _one(y);

y remains equal to 3

Pointers and Parameter Passing

* How can we get a function to change the value
held in a variable?

void add one (int *p) {
*p: *p-|- 1;
}
int y

3;
add _one(&y);

y is now equal to 4

Types of Pointers

* Pointers are used to point to any kind of data
(int, char, a struct, etc.)

* Normally a pointer only points to one type
(int, char, a struct, etc.).
—void * is a type that can point to anything
(generic pointer)
— Use void * sparingly to help avoid program bugs,
and security issues, and other bad things!

More C Pointer Dangers

* Declaring a pointer just allocates space to hold
the pointer — it does not allocate the thing
being pointed to!

* Local variables in C are not initialized, they
may contain anything (aka “garbage”)

 What does the following code do?

void £ ()

{
int *ptr;
*ptr = 5;

Pointers and Structures

typedef struct {
int x;
int y;

} Point;

Point pl;
Point p2;
Point *paddr;

/* dot notation */
int h = pl.x;
p2.y = pl.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr) .x;

/* This works too */

pl = p2;

12

Pointers in C

* Why use pointers?
— If we want to pass a large struct or array, it’s easier /
faster / etc. to pass a pointer than the whole thing

— In general, pointers allow cleaner, more compact code

e So what are the drawbacks?

— Pointers are probably the single largest source of bugs
in C, so be careful anytime you deal with them

* Most problematicwith dynamic memory management—
coming up next week

* Dangling references and memory leaks

Why Pointers in C?

At time C was invented (early 1970s), compilers
often didn’t produce efficient code

— Computers 25,000 times faster today, compilers better

C designed to let programmer say what they want
code to do without compiler getting in way

— Even give compilers hints which registers to use!

Today’s compilers produce much better code, so
may not need to use pointers in application code

Low-level system code still needs low-level access
vVia pointers

Video: Fun with Pointers

* https://www.youtube.com/watch?v=6pmWoji
sM_E

15

Clickers/Peer Instruction Time

void foo(int *x, int *y)
{ int t;
if ((*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, ¢);

A

B
Resultis: (C:a=

D

E

Administrivia

HWO out, due: Sunday 1/31 @ 11:59:59pm
Give paper copy of mini-bio to your TA

Get iClickers and register on bCourses! Participation
points start today!

People with university-related time conflict with
lectures should contact the head GSls. We will waive
the clicker points but need to document conflict.

Let head GSIs know about exam conflicts by the end
of this week

* Arrays in C

Agenda

18

C Arrays

* Declaration:
int ar[2];
declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};

declares and initializes a 2-element integer array

C Strings

e String in Cis just an array of characters
char string[] = "abc";

* How dovyou tell how long a string is?

— Last character is followed by a 0 byte
(aka “null terminator”)

int strlen(char s[])

{
int n = 0;
while (s[n] '= 0) n++;
return n;

Array Name / Pointer Duality

* Key Concept: Array variable is a “pointer” to the first
(0th) element

* So, array variables almost identical to pointers

— char *string and char string[] are nearly
identical declarations

— Differ in subtle ways: incrementing, declaration of filled
arrays

* Consequences:
— ar isan array variable, but works like a pointer
— ar[0] is the same as *ar
— ar[2] isthe same as * (ar+2)
— Can use pointerarithmetic to conveniently access arrays

C Arrays are Very Primitive

* Anarray in C does not know its own length, and its bounds
are not checked!

— Consequence: We can accidentally access off the end of an array

— Consequence: We must passthe arrayand its size to any
procedurethatis going to manipulateit

* Segmentation faults and bus errors:

— These are VERY difficult to find;
be careful! (You'll learn how to debug these in lab)
— But also “fun” to exploit:

» “Stack overflow exploit”, maliciously write off the end of an array on
the stack

* “Heap overflow exploit”, maliciously write off the end of an array on
the heap

22

Use Defined Constants

* Arraysizen; wantto access from 0 ton-1, so you should use counter AND
utilize a variable for declaration & incrementation
— Bad pattern
int i, ar[10];
for(i =0; 1 < 10; i++){ ... }
— Better pattern
const int ARRAY SIZE = 10;
int i, a[ARRAY SIZE];
for(i = 0; i < ARRAY SIZE; i++){ ... }

* SINGLE SOURCE OF TRUTH

— You're utilizing indirection and avoiding maintaining two copies of the number
10

— DRY: “Don’t Repeat Yourself”

— And don’t forget the < rather than <=:

When Nick took 60c, he lost a day to a “segfault in a malloc called by printf on
large inputs”: Had a <= rather than a < in a single array initialization!
23

Pointing to Different Size Objects

 Modern machines are “byte-addressable”

— Hardware’s memory composed of 8-bit storage cells, each has a
unique address

A Cpointeris just abstracted memory address

* Type declaration tellscompiler how many bytes to fetch on
each access through pointer
— E.g., 32-bit integerstoredin 4 consecutive 8-bit bytes

short *y int *x char *z

59 58 57 56%5 54 53 52 51 50 49 48%7 46 45 44 43%2 Byte address

l—'—‘ \) l—'—,
' .
16-bit short stored 32-bit integer 8-bit character

in two bytes stored in four bytes stored in one byte
24

sizeof() operator

sizeof(type) returns number of bytes in object
— But number of bits in a byte is not standardized

* In olden times, when dragons roamed the earth, bytes
couldbe 5, 6, 7, 9 bits long

By definition, sizeof(char)==1
Can take sizeof(arg), or sizeof(structtype)

We'll see more of sizeof when we look at
dynamic memory management

Pointer Arithmetic

pointer + number pointer — number
e.g.,, pointer + 1 adds 1 something to a pointer

char *p; int *p;
char a, int a
char b; int b;
p = &a; In each, p now pointstob p = &a;
P += 1; <«7— (Assumingcompilerdoesn’t —P += 1;

reorder variablesin memory.
Never code like this!!!!)

Adds 1*sizeof (char) Adds 1*sizeof (int)
to the memory address to the memory address

Pointer arithmetic should be used cautiously

26

Changing a Pointer Argument?

 What if want function to change a pointer?
 What gets printed?

void inc ptr(int *p)

{ p= p+1;

int A[3] = {50, 60,

int* q = A;
inc ptr(q)
printf (“*q

°
4

$d\n"”,

70} ;

*q) ;

A.q.*
|l

q=

50

50

60

70

Pointer to a Pointer

e Solution! Pass a pointer to a pointer, declared

as **h

* Now what gets printed?
void inc_ptr(int #**h)

{ *h = *h + 1;

int A[3] = {50, 60,
int* q = A;
inc ptr(&q);
printf(“*q = %d\n”,

}

70} ;

*q) ;

A.q.*
|l

q=

q
1

60

50

60

70

And In Conclusion, ...

* All dataisin memory

— Each memorylocation hasan addressto use to refer to it and a
value storedin it

e Pointer is a C version (abstraction) of a data address
— * “follows” a pointerto its value
— & gets the address of a value
— Arraysandstrings are implemented as variations on pointers

 Cisan efficient language, but leaves safety to the
programmer
— Variables not automatically initialized

— Use pointers with care: they are a common source of bugs in
programs

29

