
CS	61C:	
Great	Ideas	in	Computer	Architecture	
Lecture	2:	Introduction	to	C,	Part	I

Instructors:	
Vladimir	Stojanovic	&	Nicholas	Weaver

http://inst.eecs.berkeley.edu/~cs61c/

1

Agenda

• Everything	is	a	Number
• Computer	Organization
• Compile	vs.	Interpret

2

Key	Concepts
• Inside	computers,	everything	is	a	number
• But	numbers	usually	stored	with	a	fixed	size
– 8-bit	bytes,	16-bit	half	words,	32-bit	words,	64-bit	
double	words,	…

• Integer	and	floating-point	operations	can	lead	
to	results	too	big/small	to	store	within	their	
representations:	overflow/underflow

3

Number	Representation

• Value	of	i-th digit	is	d × Baseiwhere	i starts	at	0	
and	increases	from	right	to	left:

• 12310	=	110 x 10102 +	210 x 10101 +	310 x 10100

=	1x10010 +	2x1010 +	3x110
=	10010 +	2010 +	310
=	12310

• Binary	(Base	2),	Hexadecimal	(Base	16),	Decimal	
(Base	10)	different	ways	to	represent	an	integer
– We’ll	use	1two,	5ten,	10hex to	be	clearer	

(vs.	12,				48,			510,		1016)

4

Number	Representation

• Hexadecimal	digits:	
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• FFFhex =	15tenx	16ten2 +	15tenx	16ten1 +	15tenx	16ten0
=	3840ten +	240ten +	15ten
=	4095ten

• 1111	1111	1111two =	FFFhex =	4095ten
• May	put	blanks	every	group	of	binary,	octal,	or	
hexadecimal	digits	to	make	it	easier	to	parse,	like	
commas	in	decimal

5

Signed	and	Unsigned	Integers

• C,	C++,	and	Java	have	signed	integers,	e.g.,	7,	-255:
int x, y, z;

• C,	C++	also	have	unsigned	 integers,	which	are	used	
for	addresses

• 32-bit	word	can	represent	232 binary	numbers
• Unsigned	integers	in	32	bit	word	represent	
0	to	232-1	(4,294,967,295)

6

Unsigned	Integers
0000	0000	0000	0000	0000	0000	0000	0000two =	0ten
0000	0000	0000	0000	0000	0000	0000	0001two =	1ten
0000	0000	0000	0000	0000	0000	0000	0010two =	2ten

...	 ...
0111	1111	1111	1111	1111	1111	1111	1101two =	2,147,483,645ten
0111	1111	1111	1111	1111	1111	1111	1110two =	2,147,483,646ten
0111	1111	1111	1111	1111	1111	1111	1111two =	2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0000two =	2,147,483,648ten
1000	0000	0000	0000	0000	0000	0000	0001two =	2,147,483,649ten
1000	0000	0000	0000	0000	0000	0000	0010two =	2,147,483,650ten

...	 ...
1111	1111	1111	1111	1111	1111	1111	1101two =	4,294,967,293ten
1111	1111	1111	1111	1111	1111	1111	1110two =	4,294,967,294ten
1111	1111	1111	1111	1111	1111	1111	1111two =	4,294,967,295ten

7

Signed	Integers	and	
Two’s-Complement	Representation

• Signed	integers	in	C;	want	½	numbers	<0,	want	½	
numbers	>0,	and	want	one	0	

• Two’s	complement	treats	0	as	positive,	so	32-bit	
word	represents	232	integers	from
-231	(–2,147,483,648)	 to	231-1	(2,147,483,647)
– Note:	one	negative	number	with	no	positive	version
– Book	lists	some	other	options,	all	of	which	are	worse
– Every	computer	uses	two’s	complement	today

• Most-significant	bit	(leftmost)	is	the	sign	bit,	
since	0	means	positive	(including	0),	1	means	
negative
– Bit	31	is	most	significant,	bit	0	is	least	significant

8

Two’s-Complement	Integers
0000	0000	0000	0000	0000	0000	0000	0000two =	0ten
0000	0000	0000	0000	0000	0000	0000	0001two =	1ten
0000	0000	0000	0000	0000	0000	0000	0010two =	2ten

...	 ...
0111	1111	1111	1111	1111	1111	1111	1101two =	2,147,483,645ten
0111	1111	1111	1111	1111	1111	1111	1110two =	2,147,483,646ten
0111	1111	1111	1111	1111	1111	1111	1111two =	2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0000two =	–2,147,483,648ten
1000	0000	0000	0000	0000	0000	0000	0001two =	–2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0010two =	–2,147,483,646ten

...	 ...
1111	1111	1111	1111	1111	1111	1111	1101two =	–3ten
1111	1111	1111	1111	1111	1111	1111	1110two =	–2ten
1111	1111	1111	1111	1111	1111	1111	1111two =	–1ten

1/21/16 9

Sign	Bit

Ways	to	Make	Two’s	Complement
• For	N-bit	word,	complement	to	2tenN

– For	4	bit	number	3ten=0011two,	

two’s	complement	(i.e.	-3ten)	would	be	

16ten-3ten=13ten or	10000two – 0011two =	1101two

10

• Here	is	an	easier	way:
– Invert	all	bits	and	add	1

– Computers	actually	do	it	like	this,	too

0011two

1100two
+							1two

3ten

1101two

Bitwise	complement

-3ten

Binary	Addition	Example

0011
0010

3
+2
5 1

0

0

1

1

0

0

0

0

Carry

11

Two’s-Complement	Examples

• Assume	for	simplicity	4	bit	width,	-8	to	+7	
represented

12

0011
0010

3
+2
5 0101

0011
1110

3
+	(-2)

1 1	0001

0111
0001

7
+1
-8 1000
Overflow!

1101
1110

-3
+	(-2)

-5 1	1011

1000
1111

-8
+	(-1)
+7 1	0111

Carry	into	MSB	=	
Carry	Out	MSB

Carry	into	MSB	=	
Carry	Out	MSB

Overflow!

Overflow	when	
magnitude	of	result	
too	big	to	fit	into	
result	representation

Carry	in	=	carry	from	less	significant	bits
Carry	out	=	carry	to	more	significant	bits

0	to	+31

-16	to	+15

-32	to	+31☐

☐

☐

☐

13

Suppose	we	had	a	5-bit	word.	What	
integers	can	be	represented	in	two’s	
complement?

0	to	+31

-16	to	+15

-32	to	+31☐

☐

☐

☐

14

Suppose	we	had	a	5	bit	word.	What	
integers	can	be	represented	in	two’s	
complement?

Agenda

• Everything	is	a	Number
• Computer	Organization
• Compile	vs.	Interpret

15

ENIAC	(U.Penn.,	1946)
First	Electronic	General-Purpose	Computer

16

• Blazingly	fast	(multiply	in	2.8ms!)
– 10	decimal	digits	x	10	decimal	digits

• But	needed	2-3	days	to	setup	new	program,	as	
programmed	with	patch	cords	and	switches

EDSAC	(Cambridge,	1949)
First	General	Stored-Program	Computer

17

• Programs	held	as	numbers	in	memory
• 35-bit	binary	2’s	complement	words

Processor

Control

Datapath

Components	of	a	Computer

18

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	 Interface I/O-Memory	Interfaces

Program

Data

Great	Idea:	Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

19

We	are	here!

Introduction	to	C
“The	Universal	Assembly	Language”

• Class	pre-req included	
classes	teaching	Java

• Python	used	in	two	labs
• C	used	for	everything	
else

• “Some”	experience	is	
required	before	CS61C
C++	or	Java	OK

20

I	have	programmed	in	C,	C++,	C#,	or	Objective-C☐

I	have	programmed	in	Java☐

I	have	programmed	in	FORTRAN,	Cobol,	
Algol-68,	Ada,	Pascal,	or	Basic

☐

☐

21

Language	Poll!
Please	raise	hand	for	first	one	of	following	you	can	say	yes	to

Intro	to	C
• C	is	not	a	“very	high-level”	 language,	nor	a	
“big”	one,	and	is	not	specialized	to	any	
particular	area	of	application.	But	its	absence	
of	restrictions	and	its	generality	make	it	more	
convenient	and	effective	for	many	tasks	than	
supposedly	more	powerful	languages.

– Kernighan	and	Ritchie
• Enabled	first	operating	system	not	written	in	
assembly	language:	UNIX	- A	portable	OS!

22

Intro	to	C

• Why	C?:	we	can	write	programs	that	allow	us	
to	exploit	underlying	 features	of	the	
architecture	– memory	management,	special	
instructions,	parallelism

• C	and	derivatives	(C++/Obj-C/C#)	still	one	of	
the	most	popular	application	programming	
languages	after	>40	years!

23

TIOBE	Index	of	Language	Popularity

24http://www.tiobe.com
The	ratings	are	based	on	 the	number	 of	skilled	engineers	world-wide,	courses	and	third	
party	vendors.

TIOBE	Programming	Community	Index

25

Disclaimer
• You	will	not	learn	how	to	fully	code	in	C	in	these	
lectures!	You’ll	still	need	your	C	reference	 for	this	
course
– K&R	is	a	must-have

• Check	online	for	more	sources
– “JAVA	in	a	Nutshell,”	O’Reilly		

• Chapter	2,	“How	Java	Differs	from	C”
• http://oreilly.com/catalog/javanut/excerpt/index.html

– Brian	Harvey’s	helpful	transition	notes
• On	CS61C	class	website:	pages	3-19
• http://inst.eecs.berkeley.edu/~cs61c/resources/HarveyNotesC1-
3.pdf

• Key	C	concepts:	Pointers,	Arrays,	Implications	for	
Memory	management

26

Agenda

• Everything	is	a	Number
• Computer	Organization
• Compile	vs.	Interpret

27

Compilation:	Overview
• C	compilers	map	C	programs	into	architecture-
specific	machine	code	(string	of	1s	and	0s)
– Unlike	Java,	which	converts	to	architecture-
independent	bytecode

– Unlike	Python	environments,	which	interpret	the	code
– These	differ	mainly	in	exactly	when	your	program	is	
converted	to	low-level	machine	instructions	(“levels	of	
interpretation”)

– For	C,	generally	a	two	part	process	of	compiling	.c files	
to	.o files,	then	linking	the	.o files	into	executables;		

– Assembling	is	also	done	(but	is	hidden,	i.e.,	done	
automatically,	by	default);	we’ll	talk	about	that	later

28

C	Compilation	Simplified	Overview
(more	later	in	course)

29

foo.c bar.c

Compiler Compiler

foo.o bar.o

Linker lib.o

a.out

C	source	files	(text)

Machine	code	object	files

Pre-built	object	
file	libraries

Machine	code	executable	file

Compiler/assembler	
combined	here

Compilation:	Advantages

• Excellent	run-time	performance:	generally	
much	faster	than	Scheme	or	Java	for	
comparable	code	(because	it	optimizes	for	a	
given	architecture)

• Reasonable	compilation	time:	enhancements	
in	compilation	procedure	(Makefiles)	allow	
only	modified	files	to	be	recompiled

30

Compilation:	Disadvantages
• Compiled	files,	including	the	executable,	are	
architecture-specific,	depending	on	processor	
type	(e.g.,	MIPS	vs.	RISC-V)	and	the	operating	
system	(e.g.,	Windows	vs.	Linux)

• Executable	must	be	rebuilt	on	each	new	system
– I.e.,	“porting	your	code”	to	a	new	architecture

• “Change	→ Compile	→ Run	[repeat]”	iteration	
cycle	can	be	slow	during	development
– but	Make	tool	only	rebuilds	changed	pieces,	and	can	
do	compiles	in	parallel	(linker	is	sequential	though	->	
Amdahl’s	Law)

31

C	Pre-Processor	(CPP)

• C	source	files	first	pass	through	macro	processor,	CPP,	before	
compiler	sees	code

• CPP	replaces	comments	with	a	single	space
• CPP	commands	begin	with	“#”
• #include	“file.h”	/*	Inserts	file.h into	output	*/
• #include	<stdio.h>	/*	Looks	for	file	in	standard	location	*/
• #define	M_PI	(3.14159)	/*	Define	constant	*/
• #if/#endif /*	Conditional	inclusion	of	text	*/
• Use	–save-temps	option	to	gcc to	see	result	of	preprocessing
• Full	documentation	at:	http://gcc.gnu.org/onlinedocs/cpp/

32

foo.c CPP foo.i Compiler

