
 

 

Guest Lecturer:  Alan Christopher 
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CS 61C: Great Ideas in  
Computer Architecture 

 

The Flynn Taxonomy, 
Intel SIMD Instructions 



Neuromorphic Chips 

Researchers at IBM and HRL 
laboratories are looking into 
building computer chips 
that attempt to mimic 
natural thought patterns in 
order to more effectively 
solve problems in AI. 

3/08/2014 Spring 2014 -- Lecture #19 2 

http://www.technologyreview.com/featuredstory/522476/thinking-in-silicon/ 



Review of Last Lecture 

• Amdahl’s Law limits benefits of parallelization 

• Request Level Parallelism 
– Handle multiple requests in parallel  

(e.g. web search) 

• MapReduce Data Level Parallelism 
– Framework to divide up data to be processed in 

parallel 

– Mapper outputs intermediate key-value pairs 

– Reducer “combines” intermediate values with 
same key 
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Great Idea #4: Parallelism 
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Agenda 

• Flynn’s Taxonomy 

• Administrivia 

• Data Level Parallelism and SIMD 

• Bonus:  Loop Unrolling 
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Hardware vs. Software Parallelism 

• Choice of hardware and software parallelism are 
independent 
– Concurrent software can also run on serial hardware 
– Sequential software can also run on parallel hardware 

• Flynn’s Taxonomy is for parallel hardware 
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Flynn’s Taxonomy 

• SIMD and MIMD most commonly encountered today 
• Most common parallel processing programming style: 

Single Program Multiple Data (“SPMD”) 
– Single program that runs on all processors of an MIMD 
– Cross-processor execution coordination through conditional 

expressions (will see later in Thread Level Parallelism) 

• SIMD: specialized function units (hardware), for handling 
lock-step calculations involving arrays 
– Scientific computing, signal processing, multimedia (audio/video 

processing) 
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Single Instruction/Single Data Stream 

• Sequential computer 
that exploits no 
parallelism in either the 
instruction or data 
streams 

• Examples of SISD 
architecture are 
traditional uniprocessor 
machines 
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Processing Unit 



Multiple Instruction/Single Data Stream 

• Exploits multiple 
instruction streams 
against a single data 
stream for data 
operations that can be 
naturally parallelized 
(e.g. certain kinds of 
array processors) 

• MISD no longer 
commonly 
encountered, mainly of 
historical interest only 
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Single Instruction/Multiple Data Stream 

• Computer that  applies 
a single instruction 
stream to multiple data 
streams for operations 
that may be naturally 
parallelized  
(e.g. SIMD instruction 
extensions or Graphics 
Processing Unit) 
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Multiple Instruction/Multiple Data Stream 

• Multiple autonomous 
processors 
simultaneously executing 
different instructions on 
different data 

• MIMD architectures 
include multicore and 
Warehouse Scale 
Computers 
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Agenda 

• Flynn’s Taxonomy 

• Administrivia 

• Data Level Parallelism and SIMD 

• Bonus:  Loop Unrolling 
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Administrivia 

• Midterm next Wednesday 

– May have 1 double sided 8.5’’ x 11’’ sheet of hand 
written notes 

– May also bring an unedited copy of the MIPS 
green sheet.  

• We will provide a copy if you forget yours 

• Proj2 (MapReduce) to be released soon 

– Part 1 due date pushed later 

– Work in partners, 1 of you must know Java 
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Agenda 

• Flynn’s Taxonomy 

• Administrivia 

• Data Level Parallelism and SIMD 

• Bonus:  Loop Unrolling 
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SIMD Architectures 

• Data-Level Parallelism (DLP):  Executing one 
operation on multiple data streams 

• Example:  Multiplying a coefficient vector by a 
data vector (e.g. in filtering) 

             y[i] := c[i]  x[i], 0 i<n   

• Sources of performance improvement: 
– One instruction is fetched & decoded for entire 

operation 

– Multiplications are known to be independent 

– Pipelining/concurrency in memory access as well 
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“Advanced Digital Media Boost” 

• To improve performance, Intel’s SIMD instructions 

– Fetch one instruction, do the work of multiple instructions 

– MMX (MultiMedia eXtension, Pentium II processor family) 

– SSE (Streaming SIMD Extension, Pentium III and beyond)  
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Example:  SIMD Array Processing 

for each f in array: 

    f = sqrt(f) 

for each f in array { 

    load f to the floating-point register 

    calculate the square root 

    write the result from the register to memory 

} 

for every 4 members in array { 

    load 4 members to the SSE register 

    calculate 4 square roots in one operation 

    write the result from the register to memory 

} 
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pseudocode 

SISD 

SIMD 



SSE Instruction Categories 
for Multimedia Support 

• Intel processors are CISC (complicated instrs) 

• SSE-2+ supports wider data types to allow  
16 × 8-bit and 8 × 16-bit operands 
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Intel Architecture SSE2+ 
128-Bit SIMD Data Types 

• Note: in Intel Architecture (unlike MIPS) a word is 16 bits 
– Single precision FP: Double word (32 bits) 

– Double precision FP: Quad word (64 bits) 
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XMM Registers 

• Architecture extended with eight 128-bit data registers 
– 64-bit address architecture:  available as 16 64-bit registers (XMM8 – 

XMM15) 

– e.g. 128-bit packed single-precision floating-point data type 
(doublewords), allows four single-precision operations to be 
performed simultaneously 
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SSE/SSE2 Floating Point Instructions 

{SS} Scalar Single precision FP:  1 32-bit operand in a 128-bit register 

{PS} Packed Single precision FP: 4 32-bit operands in a 128-bit register 

{SD} Scalar Double precision FP: 1 64-bit operand in a 128-bit register 

{PD} Packed Double precision FP, or 2 64-bit operands in a 128-bit register 
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SSE/SSE2 Floating Point Instructions 

xmm: one operand is a 128-bit SSE2 register 
mem/xmm: other operand is in memory or an SSE2 register 
{A} 128-bit operand is aligned in memory 
{U} means the 128-bit operand is unaligned in memory  
{H} means move the high half of the 128-bit operand 
{L} means move the low half of the 128-bit operand 
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add from mem to XMM register, 
packed single precision 

move from XMM register to mem,  
memory aligned, packed single precision 

move from mem to XMM register, 
memory aligned, packed single precision 

Computation to be performed: 
 vec_res.x = v1.x + v2.x; 

 vec_res.y = v1.y + v2.y; 

 vec_res.z = v1.z + v2.z; 

 vec_res.w = v1.w + v2.w; 

 

SSE Instruction Sequence: 
movaps  address-of-v1, %xmm0  

 // v1.w | v1.z | v1.y | v1.x -> xmm0 

addps   address-of-v2, %xmm0   

 // v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x  

-> xmm0               

movaps  %xmm0, address-of-vec_res 

 

 

Example: Add Single  
Precision FP Vectors 

3/08/2014 Spring 2014 -- Lecture #19 23 



Example: Image Converter (1/5) 

• Converts BMP (bitmap) image to a YUV (color 
space) image format: 
– Read individual pixels from the BMP image,  

convert pixels into YUV format 

– Can pack the pixels and operate on a set of pixels with 
a single instruction 

• Bitmap image consists of 8-bit monochrome 
pixels 
– By packing these pixel values in a 128-bit register, we 

can operate on 128/8 = 16 values at a time 

– Significant performance boost  
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Example: Image Converter (2/5) 

• FMADDPS – Multiply and add packed single 
precision floating point instruction 

• One of the typical operations computed in 
transformations (e.g. DFT or FFT) 
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P = ∑ f(n) × x(n) 
N 

n = 1 

CISC Instr! 



Example: Image Converter (3/5) 

•   FP numbers f(n) and x(n) in src1 and src2; p in dest; 

•   C implementation for N = 4 (128 bits): 

 for (int i = 0; i < 4; i++) 

  p = p + src1[i] * src2[i]; 

1) Regular x86 instructions for the inner loop: 
  fmul  […]  

  faddp […] 

– Instructions executed: 4 * 2 = 8  (x86) 
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Example: Image Converter (4/5) 

•   FP numbers f(n) and x(n) in src1 and src2; p in dest; 

•   C implementation for N = 4 (128 bits): 

 for (int i = 0; i < 4; i++) 

  p = p + src1[i] * src2[i]; 

2) SSE2 instructions for the inner loop:  

 //xmm0=p, xmm1=src1[i], xmm2=src2[i] 

 mulps %xmm1,%xmm2  // xmm2 * xmm1 -> xmm2 

 addps %xmm2,%xmm0  // xmm0 + xmm2 -> xmm0 

– Instructions executed: 2 (SSE2) 
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Example: Image Converter (5/5) 

•   FP numbers f(n) and x(n) in src1 and src2; p in dest; 

•   C implementation for N = 4 (128 bits): 

 for (int i = 0; i < 4; i++) 

  p = p + src1[i] * src2[i]; 

3) SSE5 accomplishes the same in one instruction:  
 fmaddps %xmm0, %xmm1, %xmm2, %xmm0 

 // xmm2 * xmm1 + xmm0 -> xmm0  

 // multiply xmm1 x xmm2 packed single,  

// then add product packed single to sum 

in xmm0 
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Summary 

• Flynn Taxonomy of Parallel Architectures 

– SIMD: Single Instruction Multiple Data 

– MIMD: Multiple Instruction Multiple Data 

– SISD: Single Instruction Single Data 

– MISD: Multiple Instruction Single Data (unused) 

• Intel SSE SIMD Instructions 

– One instruction fetch that operates on multiple 
operands simultaneously 

– 128/64 bit XMM registers 
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You are responsible for the material contained 
on the following slides, though we may not have 
enough time to get to them in lecture. 

They have been prepared in a way that should 
be easily readable and the material will be 
touched upon in the following lecture. 
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Agenda 

• Flynn’s Taxonomy 

• Administrivia 

• Data Level Parallelism and SIMD 

• Bonus:  Loop Unrolling 
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Data Level Parallelism and SIMD 

• SIMD wants adjacent values in memory that 
can be operated in parallel 

• Usually specified in programs as loops 

   for(i=0; i<1000; i++) 

      x[i] = x[i] + s; 

• How can we reveal more data level parallelism 
than is available in a single iteration of a loop? 

– Unroll the loop and adjust iteration rate 
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Looping in MIPS 

Assumptions:  

 $s0  initial address (beginning of array) 

 $s1  scalar value s 

 $s2  termination address (end of array) 

Loop: 

  lw    $t0,0($s0) 

  addu  $t0,$t0,$s1   # add s to array element 

  sw    $t0,0($s0)    # store result 

  addiu $s0,$s0,4     # move to next element  

  bne   $s0,$s2,Loop  # repeat Loop if not done 
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Loop Unrolled 

Loop: lw $t0,0($s0)             
  addu $t0,$t0,$s1             
  sw $t0,0($s0) 
  lw $t1,4($s0)            
  addu $t1,$t1,$s1             
  sw $t1,4($s0) 
  lw $t2,8($s0)        
  addu $t2,$t2,$s1         
  sw $t2,8($s0) 
  lw $t3,12($s0)        
  addu $t3,$t3,$s1         
  sw $t3,12($s0) 
  addiu  $s0,$s0,16    
  bne $s0,$s2,Loop 

 

NOTE: 
1. Using different registers 

eliminate stalls 
 

2. Loop overhead encountered 
only once every 4 data 
iterations 
 

3. This unrolling works if  
  loop_limit mod 4 = 0 
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Loop Unrolled Scheduled 

Loop: lwc1 $t0,0($s0)             
    lwc1 $t1,4($s0)     
    lwc1 $t2,8($s0) 
    lwc1 $t3,12($s0) 
    add.s $t0,$t0,$s1   
           add.s $t1,$t1,$s1  
    add.s $t2,$t2,$s1 
    add.s $t3,$t3,$s1 
    swc1 $t0,0($s0) 
    swc1 $t1,4($s0) 
    swc1 $t2,8($s0) 
    swc1 $t3,12($s0) 
      addiu $s0,$s0,16 
    bne $s0,$s2,Loop 

4 Loads side-by-side:  
Could replace with 4 wide SIMD Load 

4 Adds side-by-side:  
Could replace with 4 wide SIMD Add 

4 Stores side-by-side:  
Could replace with 4 wide SIMD Store 
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Note:  We just switched from integer instructions to single-precision FP instructions! 



Loop Unrolling in C 

• Instead of compiler doing loop unrolling, could do 
it yourself in C: 

  for(i=0; i<1000; i++) 

    x[i] = x[i] + s; 

 
  for(i=0; i<1000; i=i+4) { 

    x[i]   = x[i]   + s;  

    x[i+1] = x[i+1] + s;   

    x[i+2] = x[i+2] + s;  

    x[i+3] = x[i+3] + s; 

  } 
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What is  
downside 
of doing  
this in C? 

Loop Unroll 



Generalizing Loop Unrolling 

• Take a loop of n iterations and perform a  
k-fold unrolling of the body of the loop: 

– First run the loop with k copies of the body 
floor(n/k) times 

–  To finish leftovers, then run the loop with 1 copy 
of the body n mod k times 

• (Will revisit loop unrolling again when get to 
pipelining later in semester) 
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