

Guest Lecturer: Alan Christopher

3/08/2014 Spring 2014 -- Lecture #19 1

CS 61C: Great Ideas in
Computer Architecture

The Flynn Taxonomy,
Intel SIMD Instructions

Neuromorphic Chips

Researchers at IBM and HRL
laboratories are looking into
building computer chips
that attempt to mimic
natural thought patterns in
order to more effectively
solve problems in AI.

3/08/2014 Spring 2014 -- Lecture #19 2

http://www.technologyreview.com/featuredstory/522476/thinking-in-silicon/

Review of Last Lecture

• Amdahl’s Law limits benefits of parallelization

• Request Level Parallelism
– Handle multiple requests in parallel

(e.g. web search)

• MapReduce Data Level Parallelism
– Framework to divide up data to be processed in

parallel

– Mapper outputs intermediate key-value pairs

– Reducer “combines” intermediate values with
same key

3/08/2014 Spring 2014 -- Lecture #19 3

Great Idea #4: Parallelism

3/08/2014 Spring 2014 -- Lecture #19

Smart
Phone

Warehouse
Scale

Computer

Leverage
Parallelism &
Achieve High
Performance

Core …

Memory

Input/Output

Computer

Core

• Parallel Requests
Assigned to computer

e.g. search “Garcia”

• Parallel Threads
Assigned to core

e.g. lookup, ads

• Parallel Instructions
> 1 instruction @ one time

e.g. 5 pipelined instructions

• Parallel Data
> 1 data item @ one time

e.g. add of 4 pairs of words

• Hardware descriptions
All gates functioning in

parallel at same time

Software Hardware

Cache Memory

Core

Instruction Unit(s)

Functional
Unit(s)

A0+B0 A1+B1 A2+B2 A3+B3

Logic Gates

4

We are here

Agenda

• Flynn’s Taxonomy

• Administrivia

• Data Level Parallelism and SIMD

• Bonus: Loop Unrolling

3/08/2014 Spring 2014 -- Lecture #19 5

Hardware vs. Software Parallelism

• Choice of hardware and software parallelism are
independent
– Concurrent software can also run on serial hardware
– Sequential software can also run on parallel hardware

• Flynn’s Taxonomy is for parallel hardware
3/08/2014 Spring 2014 -- Lecture #19 6

Flynn’s Taxonomy

• SIMD and MIMD most commonly encountered today
• Most common parallel processing programming style:

Single Program Multiple Data (“SPMD”)
– Single program that runs on all processors of an MIMD
– Cross-processor execution coordination through conditional

expressions (will see later in Thread Level Parallelism)

• SIMD: specialized function units (hardware), for handling
lock-step calculations involving arrays
– Scientific computing, signal processing, multimedia (audio/video

processing)
3/08/2014 Spring 2014 -- Lecture #19 7

Single Instruction/Single Data Stream

• Sequential computer
that exploits no
parallelism in either the
instruction or data
streams

• Examples of SISD
architecture are
traditional uniprocessor
machines

3/08/2014 Spring 2014 -- Lecture #19 8

Processing Unit

Multiple Instruction/Single Data Stream

• Exploits multiple
instruction streams
against a single data
stream for data
operations that can be
naturally parallelized
(e.g. certain kinds of
array processors)

• MISD no longer
commonly
encountered, mainly of
historical interest only

3/08/2014 Spring 2014 -- Lecture #19 9

Single Instruction/Multiple Data Stream

• Computer that applies
a single instruction
stream to multiple data
streams for operations
that may be naturally
parallelized
(e.g. SIMD instruction
extensions or Graphics
Processing Unit)

3/08/2014 Spring 2014 -- Lecture #19 10

Multiple Instruction/Multiple Data Stream

• Multiple autonomous
processors
simultaneously executing
different instructions on
different data

• MIMD architectures
include multicore and
Warehouse Scale
Computers

3/08/2014 Spring 2014 -- Lecture #19 11

Agenda

• Flynn’s Taxonomy

• Administrivia

• Data Level Parallelism and SIMD

• Bonus: Loop Unrolling

3/08/2014 Spring 2014 -- Lecture #19 12

Administrivia

• Midterm next Wednesday

– May have 1 double sided 8.5’’ x 11’’ sheet of hand
written notes

– May also bring an unedited copy of the MIPS
green sheet.

• We will provide a copy if you forget yours

• Proj2 (MapReduce) to be released soon

– Part 1 due date pushed later

– Work in partners, 1 of you must know Java

3/08/2014 Spring 2014 -- Lecture #19 13

Agenda

• Flynn’s Taxonomy

• Administrivia

• Data Level Parallelism and SIMD

• Bonus: Loop Unrolling

3/08/2014 Spring 2014 -- Lecture #19 14

SIMD Architectures

• Data-Level Parallelism (DLP): Executing one
operation on multiple data streams

• Example: Multiplying a coefficient vector by a
data vector (e.g. in filtering)

 y[i] := c[i] x[i], 0 i<n

• Sources of performance improvement:
– One instruction is fetched & decoded for entire

operation

– Multiplications are known to be independent

– Pipelining/concurrency in memory access as well

 3/08/2014 Slide 15 Spring 2014 -- Lecture #19

“Advanced Digital Media Boost”

• To improve performance, Intel’s SIMD instructions

– Fetch one instruction, do the work of multiple instructions

– MMX (MultiMedia eXtension, Pentium II processor family)

– SSE (Streaming SIMD Extension, Pentium III and beyond)

3/08/2014 Spring 2014 -- Lecture #19 16

Example: SIMD Array Processing

for each f in array:

 f = sqrt(f)

for each f in array {

 load f to the floating-point register

 calculate the square root

 write the result from the register to memory

}

for every 4 members in array {

 load 4 members to the SSE register

 calculate 4 square roots in one operation

 write the result from the register to memory

}
3/08/2014 Spring 2014 -- Lecture #19 17

pseudocode

SISD

SIMD

SSE Instruction Categories
for Multimedia Support

• Intel processors are CISC (complicated instrs)

• SSE-2+ supports wider data types to allow
16 × 8-bit and 8 × 16-bit operands

3/08/2014 Spring 2014 -- Lecture #19 18

Intel Architecture SSE2+
128-Bit SIMD Data Types

• Note: in Intel Architecture (unlike MIPS) a word is 16 bits
– Single precision FP: Double word (32 bits)

– Double precision FP: Quad word (64 bits)
3/08/2014 Spring 2014 -- Lecture #19 19

64 63

64 63

64 63

32 31

32 31

96 95

96 95 16 15 48 47 80 79 122 121

64 63 32 31 96 95 16 15 48 47 80 79 122 121 16 / 128 bits

8 / 128 bits

4 / 128 bits

2 / 128 bits

XMM Registers

• Architecture extended with eight 128-bit data registers
– 64-bit address architecture: available as 16 64-bit registers (XMM8 –

XMM15)

– e.g. 128-bit packed single-precision floating-point data type
(doublewords), allows four single-precision operations to be
performed simultaneously

3/08/2014 Spring 2014 -- Lecture #19 20

XMM7
XMM6
XMM5
XMM4
XMM3
XMM2
XMM1
XMM0

127 0

SSE/SSE2 Floating Point Instructions

{SS} Scalar Single precision FP: 1 32-bit operand in a 128-bit register

{PS} Packed Single precision FP: 4 32-bit operands in a 128-bit register

{SD} Scalar Double precision FP: 1 64-bit operand in a 128-bit register

{PD} Packed Double precision FP, or 2 64-bit operands in a 128-bit register

3/08/2014 Spring 2014 -- Lecture #19 21

SSE/SSE2 Floating Point Instructions

xmm: one operand is a 128-bit SSE2 register
mem/xmm: other operand is in memory or an SSE2 register
{A} 128-bit operand is aligned in memory
{U} means the 128-bit operand is unaligned in memory
{H} means move the high half of the 128-bit operand
{L} means move the low half of the 128-bit operand

3/08/2014 Spring 2014 -- Lecture #19 22

add from mem to XMM register,
packed single precision

move from XMM register to mem,
memory aligned, packed single precision

move from mem to XMM register,
memory aligned, packed single precision

Computation to be performed:
 vec_res.x = v1.x + v2.x;

 vec_res.y = v1.y + v2.y;

 vec_res.z = v1.z + v2.z;

 vec_res.w = v1.w + v2.w;

SSE Instruction Sequence:
movaps address-of-v1, %xmm0

 // v1.w | v1.z | v1.y | v1.x -> xmm0

addps address-of-v2, %xmm0

 // v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x

-> xmm0

movaps %xmm0, address-of-vec_res

Example: Add Single
Precision FP Vectors

3/08/2014 Spring 2014 -- Lecture #19 23

Example: Image Converter (1/5)

• Converts BMP (bitmap) image to a YUV (color
space) image format:
– Read individual pixels from the BMP image,

convert pixels into YUV format

– Can pack the pixels and operate on a set of pixels with
a single instruction

• Bitmap image consists of 8-bit monochrome
pixels
– By packing these pixel values in a 128-bit register, we

can operate on 128/8 = 16 values at a time

– Significant performance boost

3/08/2014 Spring 2014 -- Lecture #19 25

Example: Image Converter (2/5)

• FMADDPS – Multiply and add packed single
precision floating point instruction

• One of the typical operations computed in
transformations (e.g. DFT or FFT)

3/08/2014 Spring 2014 -- Lecture #19 26

P = ∑ f(n) × x(n)
N

n = 1

CISC Instr!

Example: Image Converter (3/5)

• FP numbers f(n) and x(n) in src1 and src2; p in dest;

• C implementation for N = 4 (128 bits):

 for (int i = 0; i < 4; i++)

 p = p + src1[i] * src2[i];

1) Regular x86 instructions for the inner loop:
 fmul […]

 faddp […]

– Instructions executed: 4 * 2 = 8 (x86)

 3/08/2014 Spring 2014 -- Lecture #19 27

Example: Image Converter (4/5)

• FP numbers f(n) and x(n) in src1 and src2; p in dest;

• C implementation for N = 4 (128 bits):

 for (int i = 0; i < 4; i++)

 p = p + src1[i] * src2[i];

2) SSE2 instructions for the inner loop:

 //xmm0=p, xmm1=src1[i], xmm2=src2[i]

 mulps %xmm1,%xmm2 // xmm2 * xmm1 -> xmm2

 addps %xmm2,%xmm0 // xmm0 + xmm2 -> xmm0

– Instructions executed: 2 (SSE2)

3/08/2014 Spring 2014 -- Lecture #19 28

Example: Image Converter (5/5)

• FP numbers f(n) and x(n) in src1 and src2; p in dest;

• C implementation for N = 4 (128 bits):

 for (int i = 0; i < 4; i++)

 p = p + src1[i] * src2[i];

3) SSE5 accomplishes the same in one instruction:
 fmaddps %xmm0, %xmm1, %xmm2, %xmm0

 // xmm2 * xmm1 + xmm0 -> xmm0

 // multiply xmm1 x xmm2 packed single,

// then add product packed single to sum

in xmm0

3/08/2014 Spring 2014 -- Lecture #19 29

Summary

• Flynn Taxonomy of Parallel Architectures

– SIMD: Single Instruction Multiple Data

– MIMD: Multiple Instruction Multiple Data

– SISD: Single Instruction Single Data

– MISD: Multiple Instruction Single Data (unused)

• Intel SSE SIMD Instructions

– One instruction fetch that operates on multiple
operands simultaneously

– 128/64 bit XMM registers

3/08/2014 Spring 2014 -- Lecture #19 30

You are responsible for the material contained
on the following slides, though we may not have
enough time to get to them in lecture.

They have been prepared in a way that should
be easily readable and the material will be
touched upon in the following lecture.

3/08/2014 Spring 2014 -- Lecture #19 31

Agenda

• Flynn’s Taxonomy

• Administrivia

• Data Level Parallelism and SIMD

• Bonus: Loop Unrolling

3/08/2014 Spring 2014 -- Lecture #19 32

Data Level Parallelism and SIMD

• SIMD wants adjacent values in memory that
can be operated in parallel

• Usually specified in programs as loops

 for(i=0; i<1000; i++)

 x[i] = x[i] + s;

• How can we reveal more data level parallelism
than is available in a single iteration of a loop?

– Unroll the loop and adjust iteration rate

3/08/2014 Spring 2014 -- Lecture #19 33

Looping in MIPS

Assumptions:

 $s0 initial address (beginning of array)

 $s1 scalar value s

 $s2 termination address (end of array)

Loop:

 lw $t0,0($s0)

 addu $t0,$t0,$s1 # add s to array element

 sw $t0,0($s0) # store result

 addiu $s0,$s0,4 # move to next element

 bne $s0,$s2,Loop # repeat Loop if not done

3/08/2014 34 Spring 2014 -- Lecture #19

Loop Unrolled

Loop: lw $t0,0($s0)
 addu $t0,$t0,$s1
 sw $t0,0($s0)
 lw $t1,4($s0)
 addu $t1,$t1,$s1
 sw $t1,4($s0)
 lw $t2,8($s0)
 addu $t2,$t2,$s1
 sw $t2,8($s0)
 lw $t3,12($s0)
 addu $t3,$t3,$s1
 sw $t3,12($s0)
 addiu $s0,$s0,16
 bne $s0,$s2,Loop

NOTE:
1. Using different registers

eliminate stalls

2. Loop overhead encountered
only once every 4 data
iterations

3. This unrolling works if
 loop_limit mod 4 = 0

3/08/2014 35 Spring 2014 -- Lecture #19

Loop Unrolled Scheduled

Loop: lwc1 $t0,0($s0)
 lwc1 $t1,4($s0)
 lwc1 $t2,8($s0)
 lwc1 $t3,12($s0)
 add.s $t0,$t0,$s1
 add.s $t1,$t1,$s1
 add.s $t2,$t2,$s1
 add.s $t3,$t3,$s1
 swc1 $t0,0($s0)
 swc1 $t1,4($s0)
 swc1 $t2,8($s0)
 swc1 $t3,12($s0)
 addiu $s0,$s0,16
 bne $s0,$s2,Loop

4 Loads side-by-side:
Could replace with 4 wide SIMD Load

4 Adds side-by-side:
Could replace with 4 wide SIMD Add

4 Stores side-by-side:
Could replace with 4 wide SIMD Store

3/08/2014 36 Spring 2014 -- Lecture #19

Note: We just switched from integer instructions to single-precision FP instructions!

Loop Unrolling in C

• Instead of compiler doing loop unrolling, could do
it yourself in C:

 for(i=0; i<1000; i++)

 x[i] = x[i] + s;

 for(i=0; i<1000; i=i+4) {

 x[i] = x[i] + s;

 x[i+1] = x[i+1] + s;

 x[i+2] = x[i+2] + s;

 x[i+3] = x[i+3] + s;

 }

3/08/2014 Spring 2014 -- Lecture #19 37

What is
downside
of doing
this in C?

Loop Unroll

Generalizing Loop Unrolling

• Take a loop of n iterations and perform a
k-fold unrolling of the body of the loop:

– First run the loop with k copies of the body
floor(n/k) times

– To finish leftovers, then run the loop with 1 copy
of the body n mod k times

• (Will revisit loop unrolling again when get to
pipelining later in semester)

3/08/2014 38 Spring 2014 -- Lecture #19

