
Pipelining Hazards
Structural – Hazards that occur due to competition for the same resource (register file
read vs. write back, instruction fetch vs. data read). These are solved by caching and
clever register timing.
Control – Hazards that occur due to non-sequential instructions (jumps and branches).
These cannot be solved completely by forwarding, so we’re forced to introduce a branch-
delay slot (MIPS) or use branch prediction.
Data – Hazards that occur due to data dependencies (instruction requires result from
earlier instruction). These are mostly solved by forwarding, but lw still requires a bubble.

Pipelining Exercises
1) Suppose you’ve designed a MIPS processor implementation in which the stages take
the following lengths of time: IF=20ns, ID=10ns, EX=20ns, MEM=35ns, WB=10ns.
What is the minimum clock period for which your processor functions properly? Where
should the bulk of your R&D budget go for the next generation of processors?

The bottleneck is the longest pipeline stage, in this case 35 ns.

2) Your friend tells you that his processor design is 10x better than yours, since it has 50
pipeline stages to your 5. Is he right? Why or why not? (This is intentionally vague)

No. What if the clock rate is slower? An unevenly divided pipeline and the overhead in
pipelining? What about expense in terms of power or cost? The penalty of a bad branch
prediction? What about pipelining hazards?

3) Spot all data dependencies (including ones that do not lead to stalls). Draw arrows
from the stages where data is made available, directed to where it is needed. Circle the
involved registers in the instructions. Assume no forwarding. One dependency has been
drawn for you.

4) Redraw the arrows for the above question assuming that our hardware provides
forwarding.

5) How many stalls will we have to add to the pipeline to resolve the hazards in
Exercise 3? 6
How many stalls to resolve the hazards in Exercise 4? 1

6) Rewrite the following delayed branch MIPS excerpt to maximize performance
assuming forwarding.

Loop: addi $v0, $v0, 1

addi $t1, $a0, 4
lw $t0, 0($t1)
add $a0, $t0, $a1
addi $a0, $a0, 4
bne $t0, $0, Loop
nop
jr $ra

Loop: addi $t1, $a0, 4

lw $t0, 0($t1)
addi $v0, $v0, 1 # Move from top to solve load delay issue
add $a0 $t0 $a1
bne $t0, $0, Loop
addi $a0, $a0, 4 # Fill branch delay slot by moving down
jr $ra

7) Now, assume for the delayed branch code from Exercise 6 that our hardware can
execute Static Dual Issue for any two instructions at once. Using reordering (with nops
for padding), but no loop unrolling, schedule the instructions to make the loop take as
few clock cycles as possible.

addi $t1, $a0, 4 and addi $v0, $v0, 1
lw $t0, 0($t1)
stall
add $a0 $t0 $a1 and bne $t0, $0, Loop
addi $a0, $a0, 4
jr $ra

In questions 6 and 7 we can actually save more by using an offset of 4 for the lw instead
of using an addi.

