
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2008 Instructor: Dr. Dan Garcia 2008-03-09

 CS61C Midterm
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name

First Name
Student ID Number

Login cs61c-

Login First Letter (please circle) a b c d e f g h i j k l m

Login Second Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

The name of your LAB TA (please circle) Ben Brian Casey David Keaton Matt Omar
Name of the person to your Left

Name of the person to your Right
All the work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in CS61C
who have not taken it yet. (please sign)

a) Instructions (Read Me!)
• Don’t Panic!
• This booklet contains 6 numbered pages including the cover page. Put all answers on these pages; don’t

hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks,

laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly zone” spare
seat/desk between students.

• Question 0 (1 point) involves filling in the front of this page and putting your name & login on every front
sheet of paper.

• You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or
calculators. You may use one page (US Letter, front and back) of notes and the green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can. We will
deduct points if your solution is far more complicated than necessary. When we provide a blank, please fit
your answer within the space provided. You have 3 hours...relax.

 Question 0 1 2 3 4 5 Total
Minutes 1 36 36 36 36 36 180
Points 1 14 15 15 15 15 75

Score

Name: _______________________________ Login: cs61c-____

2/6

Question 1: Potpourri: hard to spell, nice to smell… (14 pts, 36 min)
Questions (a) and (b) refer to the C code to the
right; pretend you don’t know about MIPS yet.
a) In which memory sections (code, static, heap,

stack) do the following reside?

arg arr
*str val

 #define val 16

 char arr[] = "foo";

 void foo(int arg){

 char *str = (char *) malloc (val);

 char *ptr = arr;

 }

b) Name a C operation that would treat arr and ptr differently: ________________________________

You peek into the text part of an a.out file and see that the left six bits of an instruction are 0x02.
As a result of executing this instruction…
c) What’s the most that your PC could change? Be exact. ________________________________

d) What is the least? ________________________________

e) Write a getPC function, which returns the address

of the jal instruction calling it.
(two instructions should be sufficient)

getPC: _______________________________

f) Which of the best-, first-, next-fit schemes would succeed for all 5 of the following sequence of

malloc and free requests on a malloc-able region of memory only 8 bytes long? Circle those that
would and show the resulting contents of memory for each one. E.g., After the “a=malloc(4)” call, all
schemes should have the leftmost 4 boxes labeled “a”. A pencil is useful (or draw “a” lightly).

 a = malloc(4); b = malloc(1); free(a); c = malloc(3); d = malloc(4);

 best-fit first-fit next-fit

g) In one sentence, why can’t we use automatic memory management in C?

h) To reduce complexity for your software company, you delete the Compiler, Assembler and Linker
and replace them with a single program, CAL, that takes all the source code in a project and does the
job of all three for all the files given to it. Overall, is this a good idea or bad idea? Why or why not?

Name: _______________________________ Login: cs61c-____

3/6

Question 2: Player’s got a brand new bag… (15 pts, 36 min)
We want to add an inventory system to the adventure game so that the player can collect items. First,
we’ll implement a bag data structure that holds items in a linked list. Each item_t has an associated
weight, and each bag_t has a max_weight that determines its holding capacity (see the definitions
below). In the left text area for item_node_t, define the necessary data type to serve as the nodes in a
linked list of items, and in the right text area, add any necessary fields to the bag_t definition.
typedef struct item {
 int weight;
 // other fields not shown
} item_t;

c) Complete the add_item() function, which should add item into bag only if adding the item would not
cause the weight of the bag contents to exceed the bag’s max_weight. The function should return 0 if
the item could not be added, or 1 if it succeeded. Be sure to update the bag’s current_weight. You
do not need to check if malloc() returns NULL. Insert the new item into the list wherever you wish.

int add_item(item_t *item, bag_t *bag) {

 if (___) {
 return 0;
 }

 item_node_t *new_node = ___

 // Add more code below…

 return 1;
}

(d) Finally, we want an empty_bag() function that frees the bag’s linked list but NOT the memory of the
items themselves and NOT the bag itself. The bag should then be “reset”, ready for add_item. Assume
that the operating system immediately fills any freed memory with garbage. Fill in the functions below.

void empty_bag(bag_t *bag) {

 free_contents(______________________);

 // FILL IN HERE

}

void free_contents(_________________) {

 // FILL IN HERE

}

typedef struct item_node {
 // (a) FILL IN HERE

} item_node_t;

typedef struct bag {
 int max_weight;
 int current_weight;
 // add other fields necessary
 // (b) FILL IN HERE

} bag_t;

Name: _______________________________ Login: cs61c-____

4/6

Question 3: You won’t mind this question one bit! (15 pts, 36 min)
We wish to implement a bit array, where we can read and write a particular bit. Normally for
read/write array access, we would just use bracket notation (e.g., x=A[5]; A[5]=y;), but since a bit is
smaller than the smallest datatype in C, we have to design our own GetBit() and SetBit() functions.
We’ll use the following typedefs to make our job easier:
typedef uint8_t bit_t; // If it’s a single bit, value is in least significant bit.

typedef uint32_t index_t; // The index into a bit_t array to select which bit is used

E.g., imagine a 16-bit bit array: bit_t A[2]; A[1]=0x82; A[0]=0x1F; Internally, A would look like this:

 8 2 1 F
Array A: 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1

Bit index: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GetBit(A,0) would return 1, as would GetBit(A,1), GetBit(A,2), GetBit(A,3), and GetBit(A,4).
GetBit(A,5) would return 0, as would GetBit(A,6), GetBit(A,7), and GetBit(A,8). Etc.

a) How much space would the largest usable bit array take up?
“Usable” means we could read and write every bit in the array.
Express your answer in IEC format. E.g., 128 KiB, 32TiB, etc. _________________________

b) Write SetBit in C. You may not need to use all the lines.

void SetBit(bit_t A[], index_t n, bit_t b) { // b is either 0 or 1

}

c) Write GetBit(bit_t A[], index_t n) in MAL; $v0 should be 1 if the bit is on, and 0 if it’s off.

Hint: it might help if you start from the srlv and work backwards.

GetBit: _____ $t0,__________________ #

 _____ $t1,__________________ #

 _____ $t2,__________________ #

 _____ $t3,__________________ #

 srlv $v0,$t2,$t3 # “srlv rd,rt,rs” means (in C): rd = rt >> rs

 _____ ______________________ #

 jr $ra # $v0 better be either a 0 or 1

Name: _______________________________ Login: cs61c-____

5/6

Question 4: Did somebody say “Free Lunch”?! (15 pts, 36 min)
Consider two competing 5-bit floating point formats. Each contains the same fields (sign, exponent,
significand) and follows the same general rules as the 32-bit IEEE standard (denorms, biased exponent,
non-numeric values, etc.), but allocates its bits differently.

Implementation “LEFT”:

scratch space (show all work here)

Exponent Bias: ____________________

Denorm implicit exponent: ___________________

Number of NANs: ___________________

What Number Bit Pattern
Smallest non-

zero pos denorm 0x

Largest non-
infinite pos value

 0x

Negative
Infinity

–∞ 0x

Mark every representable number in the range
[+0,1] as a vertical line on the number line below.
We’ve already done it for +0.

+0 1/8 ¼ ½ ¾ 1

S EE FF Implementation “RIGHT”:

scratch space (show all work here)

Exponent Bias: ____________________

Denorm implicit exponent: ___________________

Number of NANs: ___________________

What Number Bit Pattern
Smallest non-

zero pos denorm 0x

Largest non-
infinite pos value 0x

Negative
Infinity

–∞ 0x

Mark every representable number in the range
[+0,1] as a vertical line on the number line below.
We’ve already done it for +0.

+0 1/8 ¼ ½ ¾ 1

S EEE F

Which implementation is able to represent more integers, LEFT or RIGHT ? (circle one)

Name: _______________________________ Login: cs61c-____

6/6

Question 5: Three’s a Crowd… (15 pts, 36 min)
Breaking news! We have just developed hardware that has 3-
states: {false=0, true=1, and maybe=2}! Now we can store all
our numbers in base 3. The race is on to develop a good
encoding scheme for integer values.

a) To warm up, first do some simple conversions between
decimal and unsigned ternary. Weʼve done one for you.

b) Suppose we have N ternary digits (tets, for short).

What is the largest unsigned integer that can be stored? _______________________

Ok, now that weʼve got unsigned numbers nailed down, letʼs tackle the negatives.
Weʼll look to binary representations for inspiration.

c) Name two disadvantages of a sign and magnitude approach in ternary. Suppose a leading 0
means positive, and a leading 1 means negative, similar to what we did in the binary days.

__

__

d) Maybe threeʼs complement will be more promising. To make sure

we understand what that means, letʼs begin with a very small
example – say a 2-tet number. Fill in the following number ring of
tet-patterns with the values weʼd like them to represent (just as in
twoʼs complement, we want all zeros to be zero, and want a
balanced number of positive and negative values).

e) Recall that for an N-bit twoʼs complement number, the bit-

pattern of the largest positive number looks like 011…11.
For an N-tet threeʼs complement number, what does the tet-
pattern of the largest positive number look like?

f) Provide (in pseudocode) an algorithm for negating
an N-tet threeʼs complement number.

Decimal Ternary
5 12three

26

 1000three

	Text2: static
	Text3: heap
	Text4: code
	Text5: ptr++ (good), arr++ (bad) sizeof
	Text6: j 2^28 -4
	Text7: 0
	Text8: addi $v0, $ra, -4
	Text9: jr $ra
	Text10: d
	Text11: d
	Text12: d
	Text13: d
	Text14: b
	Text15: c
	Text16: c
	Text17: c
	Text18: c
	Text19: c
	Text20: c
	Text21:
	Text22: b
	Text23:
	Text24:
	Text25:
	Text26: d
	Text27: d
	Text28: a
	Text29: d
	Text30: d
	Text31: b
	Text32: c
	Text33: c
	Text34: c
	Text35: not strongly typed, anything can be a pointer
	Text36: change one file -> recompile everything (BAD)
	Text37: item_t *item;struct item_node *next;
	Text40: stack
	Text41: item_node_t *head;
	Text42: item->weight + bag->current_weight > bag->max_weight
	Text43: (item_node_t *)malloc(sizeof(item_node_t));
	Text44: new_node->item = item;new_node->next = bag->head;bag->head = new_node;bag->weight += item->weight;
	Text45: bag->head
	Text46: item_node_t *foo
	Text47: bag->head = NULL;bag->weight = 0;
	Text48: if (foo == NULL) return;free_contents(foo->next);free(foo);
	Text49: 512MiB
	Text50: index_t byte_index = n / 8; //A[n/8] = A[n/8] & ~(1 << (n%8)) | (b << (n%8));
	Text51: bit_t bit_index = n % 8;
	Text52: A[byte_index] = A[byte_index] & ~(1 << (n%8));
	Text53: A[byte_index] = A[byte_index] | (b << (n%8));
	Text54: srl
	Text55: $a1, 3
	Text56: add
	Text57: $t0, $a0
	Text58: lbu
	Text59: 0($t1)
	Text60: andi
	Text61: $a1, 7
	Text62: andi
	Text63: $v0, $v0, 1
	Text64: calculate byte index
	Text65: offset from A[]
	Text66: get specific byte from array
	Text67: bit index
	Text68: maskoutupperbits leaving lowest
	Text69: 8 bits of exponents -> offset of 127 = 2^7 - 12 bits of exponents -> 2^(2-1) - 1 = 10 01 00 = 1 in floating point notation0 01 01 = 1.011.01 - 1 = 0.01 = 2^(-2)00001 = 0.01 * 2^(implicit exponent) -> imp.exp. = 0for NaN, EE = 11, FF != 00 However, S can be whatever I want2 * (4-1) = 60 00 01 = 0.01 * 2^(0) = 1/4S EE FF
	Text70: 2^(3-1) - 1 = 30 001 0 = 1 * 2^(-2) in this notation (least non-denorm number)0 001 1 = 1.1 * 2^(-2) (next least non-denorm number)difference between 1.1 * 2^(-2) and 1 * 2^(-2) is 0.1 * 2^(-2)least denorm number = 0 000 10.1 * 2^(imp. exp) = 0.1 * 2^(-2) -> imp. exp. = -2S EEE F1.1 * 2^(6-3) = 1.1* 2^3 = 11000 001 0 = 1.0 * 2^(1 - 3) = 1/40 001 1 = 1.1 * 2^(-2) = 0.0110 010 0 = 1.0 * 2^(2-3) = 1.0 * 2^(-1) = 1/20 010 1 = 1.1 * 2^(-1) = 1/2 + 1/4 = 3/4
	Text71: 1
	Text72: 3
	Text73: 0
	Text74: -2
	Text75: 6
	Text76: 2
	Text77: 1/4
	Text78: 1/8
	Text79: 3.5
	Text80: 12
	Text81: 01
	Text82: 0B
	Text83: 01
	Text84: 0D
	Text85: 1E
	Text86: 1C
	Check Box87: Off
	Check Box88: Yes
	Check Box89: Yes
	Check Box90: Yes
	Check Box91: Yes
	Check Box92: Yes
	Check Box93: Yes
	Check Box94: Yes
	Check Box95: Yes
	Check Box96: Yes
	Radio Button97: right
	Text98: 222_3
	Text99: 27
	Text100: 3^N - 1
	Text101: 2 0's (odometer looks weird, e.g. 1111111+ 1 = 2000000 = ?)
	Text102: you waste 1/3 of your numbers
	Text103: -1
	Text104: 1
	Text105: 2
	Text106: -2
	Text107: -3
	Text108: 3
	Text109: -4
	Text110: 4
	Text111: 111....111
	Text112: flip 2's to 0's and 0's to 2'sadd 1 at the end
	Text1:
	Text38:
	Text39:
	Text87: 3/8
	Text88:
	Text89:
	Check Box97: Off
	Check Box98: Off
	Check Box99: Off
	Check Box100: Yes
	Check Box101: Off
	Check Box102: Off

