

CS 61C Spring 2010 TA: Michael Greenbaum

Section 114/118 Week 13 – Caches cs61c-tf@inst.berkeley.edu

notes originally by Matt Johnson

More Pipelining Topics!
Hazards: Our pipelined execution doesn’t always go smoothly. There are three specific

types of conflicts that can arise: what are they?

Superscalar Hardware: Some pipeline problems happen when we don’t have enough

hardware (e.g. “If only I had two dryers…”). Superscalar means adding that redundant

hardware for some instruction-level parallelism! Would that help latency or throughput?

Who decides what hardware is used when?

Out-of-Order Execution: After instruction fetch, dispatch to a queue where the

instruction waits until input operands are available. Queue is not always FIFO! Results

are queued too, and write-back order happens in the “original” instruction order. Pretty

complex! Low-end processors still do not use this paradigm due to the silicon area that

is required for its implementation… In this class, OoOE would essentially refer to

hardware doing the work of filling branch/load delay slots. The lecture slides show an

instruction pausing in the middle of its execution.

Caches!
Conceptual Questions: Why do we cache? What is the end result of our caching, in

terms of capability?

What are temporal and spatial locality? Give high level examples in software of when

these occur.

Break up an address:

Tag Index Offset

 Offset: “column index” (O bits)

 Index: “row index” (i bits)

 Tag: “cache number” that the block/row* came from. (T bits) [*difference?]

Segmenting the address into TIO implies a geometrical structure (and size) on

our cache. Draw memory with that same geometry!

Cache Memory

…

2
i+O

 Bytes of

Data!

2
O
 columns

2
i

rows

Tag,

Valid, &

Dirty bits
2

T
 Cache

Images

Tag = 0

Tag = 1

Tag = 2

CS 61C Spring 2010 TA: Michael Greenbaum

Section 114/118 Week 13 – Caches cs61c-tf@inst.berkeley.edu

notes originally by Matt Johnson

Cache Vocab:

 Cache hit – found the right thing in the cache! Booyah!

Cache miss – Nothing in the cache block we checked, so read from memory and

write to cache!

Cache miss, block replacement – We found a block, but it had the wrong tag!

Cache Exercises!
C1: Fill this one in… Everything here is Direct-Mapped!

Address

Bits

Cache

Size

Block

Size

Tag Bits Index

Bits

Offset

Bits

Bits per

Row

16 4KB 4B

16 16KB 8B

32 8KB 8B

32 32KB 16B

32 64KB 16 12 4 146

32 512KB 5

64 64B 14

64 2048KB 1069

C2: Assume 16 B of memory and an 8B direct-mapped cache with 2-byte blocks.

Classify each of the following memory accesses as hit (H), miss (M), or miss with

replacement (R).

a. 4

b. 5

c. 2

d. 6

e. 1

f. 10

g. 7

h. 2

CS 61C Spring 2010 TA: Michael Greenbaum

Section 114/118 Week 13 – Caches cs61c-tf@inst.berkeley.edu

notes originally by Matt Johnson

C3: This composite question was inspired by exam questions but NOT identical since

the exam questions use associative caches. Direct-mapped here!

You know you have 1 MiB of memory (maxed out for processor address size) and a 16

KiB cache (data size only, not counting extra bits) with 1 KiB blocks.

#define NUM_INTS 8192

int *A = malloc(NUM_INTS * sizeof(int)); // returns address 0x100000

int i, total = 0;

for (i = 0; i < NUM_INTS; i += 128) A[i] = i; // Line 1

for (i = 0; i < NUM_INTS; i += 128) total += A[i]; // Line 2

a) What is the T:I:O breakup for the cache (assuming byte addressing)?

b) Calculate the hit percentage for the cache for the line marked “Line 1”.

c) Calculate the hit percentage for the cache for the line marked “Line 2”.

d) How could you optimize the computation?

Now a completely different setup… Your cache now has 8-byte blocks and 128 rows,

and memory has 22 bit addresses. The ARRAY_SIZE is 4 MiB and A starts at a block

boundary.

for (i = 0; i < (ARRAY_SIZE/STRETCH); i += 1) {

 for (j = 0; j < STRETCH; j += 1) sum += A[i*STRETCH + j];

 for (j = 0; j < STRETCH; j += 1) product *= A[i*STRETCH + j];

}

a) What is the T:I:O breakup for the cache (assuming byte addressing)?

b) What is the cache size (data only, no tag and extra bits) in bytes?

c) What is the largest STRETCH that minimizes cache misses?

d) Given the STRETCH size from (c), what is the # of cache misses?

e) Given the STRETCH size from (c), if A does not start at a block boundary, roughly

what is the # of cache misses for this case to the number you calculated in

question (d) above? (e.g., 8x, 1/16th)

