

CS 61C Spring 2010 TA: Long Wei

Section 115/6 Week 7 – Floats cs61c-te@imail.eecs.berkeley.edu

Quick Review
What is the instruction format for each of the following instructions?
add $s0, $s1, $s2

beq $zero, $zero, LABEL

jr $ra

addi $s0, $s1, 5

slti $s0, $s1, 0

j LABEL

R, I, R, I, I, J

Translate the following instruction into hexadecimal (the sra funct field is 3):
sra $8, $9, 16

[op | rs | rt | rd | shamt | funct] => [0 | 0 | 9 | 8 | 16 | 3] => 0x00094403

Floating Point Number Representation

In general, floating point numbers are represented using a sign and magnitude model. As in

integer sign and magnitude, a floating point number’s sign is represented by the leading bit (1 for

negative numbers, 0 for positive). The magnitude of the float is broken down into an exponent

field and a significand or fraction field.

Sign Magnitude

Sign Exponent Significand

float = (-1)
sign

×(1.Significand)2×2
(Exponent – Bias)

This breakdown is much like standard scientific notation. The exponent determines the value of

the bits in the significand (essentially defining an amount to shift the binary point from

normalized form). The significand is similar to the mantissa in scientific notation.

Rounding Modes:

IEEE 754 defines 4 rounding modes to determine how the extra two guard bits are used:

Round Towards +∞ Round Towards -∞ Truncate Unbiased

round “up” round “down” round towards 0 round to even

Rounding Exercises
Round the following binary numbers to the nearest integer using each of the four modes:

0.00 0.01 0.10 0.11 1.00 1.01 1.10 1.11
0 0 1 1 1 1 2 2

 0 0 1 1 1 1 2

 0 0 0 1 1 1 1

 0 0 1 1 1 2 2

Single Precision Floating Point:

(with an exponent bias of 127)

Double Precision Floating Point:

(with an exponent bias of 1023)

Exponent Significand Meaning

0 0 0

0 Non-zero Denorm

1~254 Anything Float

255 0 Infinity

255 Non-zero NaN

31 30 23 22 0

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

63 62 52 51 0

S EEEEEEEEEEE FFFFFFFFFF...FFFFFFFF

CS 61C Spring 2010 TA: Long Wei

Section 115/6 Week 7 – Floats cs61c-te@imail.eecs.berkeley.edu

Floating Point Exercises

Convert the following decimal numbers into binary (not float).

1.5 0.25 0.8 -16.5

1.1b 0.01b 0.1100b (repeating) -10000.1b

Give the best hex representation of the following numbers (using single precision floats):

1.0 -7.5 (1.0/3.0) (186.334/0.0)

0x3f800000 0xc0f00000 0x3eaaaaaa 0x7f800000

What is the value of the following single precision floats?

0x0 0xff94beef 0x1

0.0f NaN 2
-149

Disassembly

The process of translating raw binary instructions into MIPS is called disassembly. Given a

simple program, it is possible to translate from a raw binary all the way back to an equivalent C

program.

The first step in disassembling a single instruction is to figure out what instruction format it is.

This is easy, because all instruction formats conveniently reserve the first 6 bits for the opcode

field. From the opcode, the rest of the bits can be interpreted appropriately.

Disassembly Exercises

Be a processor! Translate the following hex instructions into MIPS:

0x8c880000 lw $t0, 0($a0)

0x2108ffff addi $t0, $t0, -1

0xaca80000 sw $t0, 0($a1)

0x03e00008 jr $ra

MAL vs. TAL
MIPS comes in two different flavors: MAL and TAL. MIPS assembly language (MAL) is the

more programmer (or lazy compiler) oriented version. It abstracts away the details of immediate

field limitations and extends the instruction set. True assembly language (TAL) is the stricter,

processor friendly MIPS. There is a one-to-one translation from TAL instructions to binary

executables. It is the job of the assembler to translate from MAL to TAL. A single MAL

pseudoinstruction might become several TAL instructions.

MAL vs. TAL Exercises
Be an assembler! Translate the following MAL program to TAL:

Foo: bge $s0, $s1, Bar

 swap $s0, $s1

Bar: beqi $s0, 100, End

 incr $s0

 j Bar

End: add $s0, $s0, -100

Foo: slt $at, $s0, $s1 #There are probably other ways

 beq $at, $0, 4 #Bar

 add $at, $0, $s1

 add $s1, $s0, $0

 add $s0, $at, $0

 addi $at, $0, 100

Bar: beq $s0, $at, 2 #End

 addi $s0, $s0, 1

 j Bar #No way to write a number without knowing

End: addi $s0, $s0, -100 #program location in memory

