
 

CS 61C Spring 2010  TA: Long Wei 

Section 115/6 Week 7 – Floats cs61c-te@imail.eecs.berkeley.edu 

 

Quick Review 
What is the instruction format for each of the following instructions? 
add $s0, $s1, $s2 

beq $zero, $zero, LABEL 

jr $ra 

addi $s0, $s1, 5 

slti $s0, $s1, 0 

j LABEL 

R, I, R, I, I, J 

Translate the following instruction into hexadecimal (the sra funct field is 3): 
sra $8, $9, 16 

[op | rs | rt | rd | shamt | funct] => [ 0 | 0 | 9 | 8 | 16 | 3] =>  0x00094403 

 

 

Floating Point Number Representation 

In general, floating point numbers are represented using a sign and magnitude model. As in 

integer sign and magnitude, a floating point number’s sign is represented by the leading bit (1 for 

negative numbers, 0 for positive). The magnitude of the float is broken down into an exponent 

field and a significand or fraction field.  

 

Sign Magnitude 

Sign Exponent Significand 

float = (-1)
sign

×(1.Significand)2×2
(Exponent – Bias)

 

 

This breakdown is much like standard scientific notation. The exponent determines the value of 

the bits in the significand (essentially defining an amount to shift the binary point from 

normalized form). The significand is similar to the mantissa in scientific notation.  

 

Rounding Modes: 

IEEE 754 defines 4 rounding modes to determine how the extra two guard bits are used: 

Round Towards +∞ Round Towards -∞ Truncate Unbiased 

round “up” round “down” round towards 0 round to even 

Rounding Exercises 
Round the following binary numbers to the nearest integer using each of the four modes: 

0.00 0.01 0.10 0.11 1.00 1.01 1.10 1.11 
0 0 1 1 1 1 2 2 

 0 0 1 1 1 1 2 

 0 0 0 1 1 1 1 

 0 0 1 1 1 2 2 

 

Single Precision Floating Point: 

 

 

(with an exponent bias of 127) 

 

Double Precision Floating Point: 

 

 

(with an exponent bias of 1023) 

 

 

Exponent Significand Meaning 

0 0 0 

0 Non-zero Denorm 

1~254 Anything Float 

255 0 Infinity 

255 Non-zero NaN 

31 30    23 22                    0 

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF 

63 62       52 51                 0 

S EEEEEEEEEEE FFFFFFFFFF...FFFFFFFF 
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Floating Point Exercises 

Convert the following decimal numbers into binary (not float). 

1.5   0.25   0.8   -16.5  

1.1b   0.01b   0.1100b (repeating) -10000.1b 

 

Give the best hex representation of the following numbers (using single precision floats): 

1.0   -7.5   (1.0/3.0)  (186.334/0.0)   

0x3f800000  0xc0f00000  0x3eaaaaaa  0x7f800000 

 

What is the value of the following single precision floats? 

0x0    0xff94beef   0x1 

0.0f    NaN    2
-149 

Disassembly 

The process of translating raw binary instructions into MIPS is called disassembly. Given a 

simple program, it is possible to translate from a raw binary all the way back to an equivalent C 

program.  

 

The first step in disassembling a single instruction is to figure out what instruction format it is. 

This is easy, because all instruction formats conveniently reserve the first 6 bits for the opcode 

field. From the opcode, the rest of the bits can be interpreted appropriately.  

 

Disassembly Exercises 

Be a processor! Translate the following hex instructions into MIPS: 
 

0x8c880000 lw $t0, 0($a0) 

0x2108ffff addi $t0, $t0, -1 

0xaca80000 sw $t0, 0($a1) 

0x03e00008 jr $ra 

 

MAL vs. TAL 
MIPS comes in two different flavors: MAL and TAL. MIPS assembly language (MAL) is the 

more programmer (or lazy compiler) oriented version. It abstracts away the details of immediate 

field limitations and extends the instruction set. True assembly language (TAL) is the stricter, 

processor friendly MIPS. There is a one-to-one translation from TAL instructions to binary 

executables. It is the job of the assembler to translate from MAL to TAL. A single MAL 

pseudoinstruction might become several TAL instructions.  

 

MAL vs. TAL Exercises 
Be an assembler! Translate the following MAL program to TAL: 

 
Foo:  bge $s0, $s1, Bar 

 swap $s0, $s1 

Bar: beqi $s0, 100, End 

 incr $s0 

 j Bar 

End: add $s0, $s0, -100 

 

Foo: slt  $at, $s0, $s1  #There are probably other ways 

     beq  $at, $0,  4    #Bar 

     add  $at, $0,  $s1 

     add  $s1, $s0, $0 

     add  $s0, $at, $0 

     addi $at, $0,  100 

Bar: beq  $s0, $at, 2    #End 

     addi $s0, $s0, 1 

     j    Bar            #No way to write a number without knowing 

End: addi $s0, $s0, -100 #program location in memory 


