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Review

e Parallelism is necessary for performance
- It looks like it’s the future of computing

- It is unlikely that serial computing will ever
catch up with parallel computing

e Software Parallelism
- Grids and clusters, networked computers
* MPI & MapReduce — two common ways to
program
e Parallelism is often difficult

- Speedup is limited by serial portion of the
Q( code and communication overhead
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Today

e Superscalars

 Power, Energy & Parallelism
* Multicores

* Vector Processors

e Challenges for Parallelism
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Disclaimers

* Please don’t let today’s material
confuse what you have already
learned about CPU’s and pipelining

* When programmer is mentioned
today, it means whoever is generating
the assembly code (so it is probably a
compiler)

* Many of the concepts described today
are difficult to implement, so if it
sounds easy, think of possible
hazards
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Superscalar

 Add more functional units or pipelines
to the CPU

* Directly reduces CPI by doing more
per cycle

e Consider what if we:

- Added another ALU
- Added 2 more read ports to the RegFile
- Added 1 more write port to the RegFile
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Simple Superscalar MIPS CPU

Instruction
Memory

Instruction |
Address

(Next Address)

Register
File

eCan now do 2
instructions in 1

cycle!
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Simple Superscalar MIPS CPU (cont.)

e Considerations
* ISA now has to be changed
- Forwarding for pipelining now harder

e Limitations of our example

- Programmer must explicitly generate
instruction parallel code

- Improvement only if other instructions
can fill slots

 Doesn’t scale well
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Superscalars in Practice

 Modern superscalar processors often
hide behind a scalar ISA

- Gives the illusion of a scalar processor

- Dynamically schedules instructions
= Tries to fill all slots with useful instructions
= Detects hazards and avoids them

 Instruction Level Parallelism (ILP)

 Multiple instructions from same
instruction stream in flight at the same
time

2 7 - Examples: pipelining and superscalars
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Scaling
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Energy & Power Considerations

Energy _ Energy % Ops

Power = =

W Second Op Second

Power Energy

Chip Packaging Battery Life
Chip Cooling Electricity Bill
System Noise Mobile Device
Case Temperature Weight
Data-Center Air

Conditioning
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Energy & Power Considerations

Power = Energy

Energy Ops

Power

Chip Packaging
Chip Cooling
System Noise
Case Temperature
Data-Center Air
Conditioning
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Parallel Helps Energy Efficiency
 Power ~ CV2f

 Circuit delay is roughly linear with V

In the same process technology...

- B

Voltage = 1 Voltage = -15%
Freq =1 Freq -15%
Area =1 Area 2
Power =1 Power 1
Perf =1 Perf ~1.8

@ William Holt, HOT Chips 2005
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Multicore

 Put multiple
CPU’s on the
same die

e Cost of multicore:
complexity and
slower single-
thread execution

e Task/Thread Level Parallelism (TLP)

* Multiple instructions streams in
flight at the same time
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Cache Coherence Problem

CPUO:
CPUO CPU1 LW R2, 16(RO)
| | CPU1:
: LW R2, 16(RO)
Cache Cache
CPU1:
Addr @ Value Addr = Value SW RO, 16 (RO)
16 5 16 B0 View of memory no
.. longer “coherent”.
| Loads of location 16
Shared Main Memory from CPUO and
Addr Value CPU1 see different

| 16 B0 values!
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Real World Example: IBM POWER?7
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Administrivia

* Proj3 due tonight at 11:59p
* Performance Contest posted tonight

e Office Hours Next Week
 Watch website for announcements

* Final Exam Review - 5/9, 3-6p, 10 Evans

e Final Exam - 5/14, 8-11a, 230 Hearst Gym

* You get to bring: two 8.5”°x11” sheets of
handwritten notes + MIPS Green sheet
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Flynn’s Taxonomy

e Classification of Parallel Architectures

Single Instruction

Multiple Instruction

Instruction Pool

Lpgd Lpg-

Instruction Pool
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Vector Processors

e Vector Processors implement SIMD

- One operation applied to whole vector
= Not all program can easily fit into this

- Can get high performance and energy
efficiency by amortizing instruction fetch

= Spends more silicon and power on ALUs

e Data Level Parallelism (DLP)

- Compute on multiple pieces of data with
the same instruction stream
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Vectors (continued)

e Vector Extensions

- Extra instructions added to a scalar ISA
to provide short vectors

- Examples: MMX, SSE, AltiVec

e Graphics Processing Units (GPU)
- Also leverage SIMD

- Initially very fixed function for graphics,
but now becoming more flexible to
support general purpose computation
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Parallelism at Different Levels

 Intra-Processor (within the core)
* Pipelining & superscalar (ILP)
- Vector extensions & GPU (DLP)

e Intra-System (within the box)
- Multicore — multiple cores per socket (TLP)
- Multisocket — multiple sockets per system

e Intra-Cluster (within the room)

* Multiple systems per rack and multiple racks
per cluster
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Conventional Wisdom (CW) in Computer Architecture

1. Old CW: Power is free, but transistors expensive

e New CW: Power wall Power expensive, transistors “free”
Can put more transistors on a chip than have power to turn on

2. Old CW: Multiplies slow, but loads fast

. New CW: Memory wall Loads slow, multiplies fast
200 clocks to DRAM, but even FP multiplies only 4 clocks

3. Old CW: More ILP via compiler / architecture innovation
Branch prediction, speculation, Out-of-order execution, VLIW, ...

e New CW: ILP wall Diminishing returns on more ILP
4. Old CW: 2X CPU Performance every 18 months
e New CW is Power Wall + Memory Wall + ILP Wall = Brick Wall

Implication: We must go parallel!
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Parallelism again? What’s different this time?

“This shift toward increasing parallelism is not
a triumphant stride forward based on
breakthroughs in novel software and
architectures for parallelism; instead, this

lunge into parallelism is actually a retreat

rom even greater challenges that thwart
efficient silicon implementation of traditional
uniprocessor architectures.”

— Berkeley View, December 2006

« HW/SW Industry bet its future that
breakthroughs will appear before it’s too late

view.eecs .berkeley.edu
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Peer Instruction

1) All energy efficient systems are

low power .y B
2) My GPU at peak can do more o)
FLOP/s than my CPU d) TT
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Peer Instruction Answer

1) An energy efficient system could peak
with high power to get work done and
then go to sleep ... FALSE

2) Current GPUs tend to have more FPUs
than current CPUs, they just aren’t as
programmable ... TRUE

1) All energy efficient systems are 12
low power
2) My GPU at peak can do more 8 T

FLOP/s than my CPU
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“And In conclusion...”

e Parallelism is all about energy efficiency
* Types of Parallelism: ILP, TLP, DLP
 Parallelism already at many levels

» Great opportunity for change
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