
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 37 –
Inter-machine Parallelism

 2010-04-26

Folding@home distributed computing
says GPUs now contribute 66% of total
performance (~4K/~6K x86 TFLOPS)
but only 6% (~.3M/~5M) of “CPUs”!

Lecturer SOE
Dan Garcia

http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats	

Thanks to Prof. Demmel for his CS267 slides;
and Andy Carle & Matt Johnson for CS61C drafts

CS61C L37 Inter-machine Parallelism (2) Garcia, Spring 2010 © UCB

Today’s Outline
  Amdahl’s Law
  Motivation for Inter-machine Parallelism
  Inter-machine parallelism hardware

  Supercomputing
  Distributed computing
  Grid computing
  Cluster computing

  Inter-machine parallelism examples
  Message Passing Interface (MPI)
  Google’s MapReduce paradigm
  Programming Challenges

CS61C L37 Inter-machine Parallelism (3) Garcia, Spring 2010 © UCB

•  Applications can almost never be completely parallelized; some serial
code remains"

•  s is serial fraction of program, P is # of processors"
•  Amdahlʼs law:"
Speedup(P) = Time(1) / Time(P)"
 ≤ 1 / (s + [(1-s) / P)], and as P ∞"
 ≤ 1 / s"
•  Even if the parallel portion of your application speeds up perfectly,  

your performance may be limited by the sequential portion"

Speedup Issues: Amdahl’s Law

Time"

Number of Processors"

Parallel portion"
Serial portion"

1" 2" 3" 4" 5"

CS61C L37 Inter-machine Parallelism (4) Garcia, Spring 2010 © UCB

Big Problems
  Simulation: the Third Pillar of Science

  Traditionally perform experiments or build systems
  Limitations to standard approach:
  Too difficult – build large wind tunnels
  Too expensive – build disposable jet
  Too slow – wait for climate or galactic evolution
  Too dangerous – weapons, drug design

  Computational Science:
  Simulate the phenomenon on computers
  Based on physical laws and efficient numerical

methods

CS61C L37 Inter-machine Parallelism (5) Garcia, Spring 2010 © UCB

Example Applications
  Science & Medicine

  Global climate modeling
  Biology: genomics; protein folding; drug design; malaria simulations
  Astrophysical modeling
  Computational Chemistry, Material Sciences and Nanosciences
  SETI@Home : Search for Extra-Terrestrial Intelligence

  Engineering
  Semiconductor design
  Earthquake and structural modeling
  Fluid dynamics (airplane design)
  Combustion (engine design)
  Crash simulation
  Computational Game Theory (e.g., Chess Databases)

  Business
  Rendering computer graphic imagery (CGI), ala Pixar and ILM
  Financial and economic modeling
  Transaction processing, web services and search engines

  Defense
  Nuclear weapons -- test by simulations
  Cryptography

CS61C L37 Inter-machine Parallelism (6) Garcia, Spring 2010 © UCB

Performance Requirements
  Performance terminology

  the FLOP: FLoating point OPeration
  “flops” = # FLOP/second is the standard metric for computing power

  Example: Global Climate Modeling
  Divide the world into a grid (e.g. 10 km spacing)
  Solve fluid dynamics equations for each point & minute

  Requires about 100 Flops per grid point per minute

  Weather Prediction (7 days in 24 hours):
  56 Gflops

  Climate Prediction (50 years in 30 days):
  4.8 Tflops

  Perspective
  Pentium 4 3GHz Desktop Processor

  ~10 Gflops
  Climate Prediction would take ~50-100 years

www.epm.ornl.gov/chammp/chammp.html

Reference:http://www.hpcwire.com/hpcwire/hpcwireWWW/04/0827/108259.html"

High Resolution
Climate Modeling

on NERSC-3  
P. Duffy, et al., LLNL"

CS61C L37 Inter-machine Parallelism (8) Garcia, Spring 2010 © UCB

  Supercomputing – like those listed in top500.org
  Multiple processors “all in one box / room” from one

vendor that often communicate through shared memory
  This is often where you find exotic architectures

  Distributed computing
  Many separate computers (each with independent CPU,

RAM, HD, NIC) that communicate through a network
  Grids (heterogenous computers across Internet)
  Clusters (mostly homogeneous computers all in one room)

  Google uses commodity computers to exploit “knee in curve”
price/performance sweet spot

  It’s about being able to solve “big” problems,
not “small” problems faster
  These problems can be data (mostly) or CPU intensive

What Can We Do? Use Many CPUs!

CS61C L37 Inter-machine Parallelism (9) Garcia, Spring 2010 © UCB

Distributed Computing Themes
  Let’s network many disparate machines into

one compute cluster
  These could all be the same (easier) or very

different machines (harder)
  Common themes

  “Dispatcher” gives jobs & collects results
  “Workers” (get, process, return) until done

  Examples
  SETI@Home, BOINC, Render farms
  Google clusters running MapReduce

CS61C L37 Inter-machine Parallelism (10) Garcia, Spring 2010 © UCB

Distributed Computing Challenges
  Communication is fundamental difficulty

  Distributing data, updating shared resource,
communicating results

  Machines have separate memories, so no usual inter-
process communication – need network

  Introduces inefficiencies: overhead, waiting, etc.

  Need to parallelize algorithms
  Must look at problems from parallel standpoint
  Tightly coupled problems require frequent

communication (more of the slow part!)
  We want to decouple the problem

  Increase data locality
  Balance the workload

CS61C L37 Inter-machine Parallelism (11) Garcia, Spring 2010 © UCB

Programming Models: What is MPI?
  Message Passing Interface (MPI)

  World’s most popular distributed API
  MPI is “de facto standard” in scientific computing
  C and FORTRAN, ver. 2 in 1997
  What is MPI good for?

  Abstracts away common network communications
  Allows lots of control without bookkeeping
  Freedom and flexibility come with complexity

  300 subroutines, but serious programs with fewer than 10

  Basics:
  One executable run on every node
  Each node process has a rank ID number assigned
  Call API functions to send messages
http://www.mpi-forum.org/
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt
http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

CS61C L37 Inter-machine Parallelism (12) Garcia, Spring 2010 © UCB

  Deadlock is possible…
  Seen in CS61A – state of no progress
  Blocking communication can cause deadlock

  Large overhead from comm. mismanagement
  Time spent blocking is wasted cycles
  Can overlap computation with non-blocking comm.

  Load imbalance is possible! Dead machines?
  Things are starting to look hard to code!

Challenges with MPI

CS61C L37 Inter-machine Parallelism (13) Garcia, Spring 2010 © UCB

Administrivia
  ??

CS61C L37 Inter-machine Parallelism (14) Garcia, Spring 2010 © UCB

Upcoming Calendar

Week # Mon Wed Thu Lab Fri
#14

Last week
o’ classes

Inter-machine
Parallelism

Summary,
Review,

Evaluation
Parallel

Intra-machine
Parallelism

(Scott)
P3 due

#15

RRR Week
Perf comp

due 11:59pm

#16

Finals Week

Review Sun
May 9 3-6pm

10 Evans

Final Exam
8-11am in

Hearst Gym

CS61C L37 Inter-machine Parallelism (15) Garcia, Spring 2010 © UCB

A New Hope: Google’s MapReduce
  Remember CS61A?

 (reduce + (map square '(1 2 3)) ⇒
(reduce + '(1 4 9)) ⇒
14

  We told you “the beauty of pure functional programming is that it’s
easily parallelizable”
  Do you see how you could parallelize this?
  What if the reduce function argument were associative, would that help?

  Imagine 10,000 machines ready to help you compute anything you
could cast as a MapReduce problem!
  This is the abstraction Google is famous for authoring

(but their reduce not the same as the CS61A’s or MPI’s reduce)
  Often, their reduce builds a reverse-lookup table for easy query

  It hides LOTS of difficulty of writing parallel code!
  The system takes care of load balancing, dead machines, etc.

CS61C L37 Inter-machine Parallelism (16) Garcia, Spring 2010 © UCB

Input & Output: each a set of key/value pairs
Programmer specifies two functions:
map (in_key, in_value)  
 list(out_key, intermediate_value)
  Processes input key/value pair
  Produces set of intermediate pairs

reduce (out_key, list(intermediate_value))  
 list(out_value)
  Combines all intermediate values for a particular key
  Produces a set of merged output values (usu just one)

code.google.com/edu/parallel/mapreduce-tutorial.html

MapReduce Programming Model

CS61C L37 Inter-machine Parallelism (17) Garcia, Spring 2010 © UCB

•  “Mapper” nodes are responsible for the map function
"// “I do I learn” (“I”,1), (“do”,1), (“I”,1), (“learn”,1)  
map(String input_key,  
 String input_value):  
 // input_key : document name (or line of text)  
 // input_value: document contents  
 for each word w in input_value:  
 EmitIntermediate(w, "1");

•  “Reducer” nodes are responsible for the reduce function
"// (“I”,[1,1]) (“I”,2)  
reduce(String output_key,  
 Iterator intermediate_values):  
 // output_key : a word  
 // output_values: a list of counts  
 int result = 0;  
 for each v in intermediate_values:  
 result += ParseInt(v);  
 Emit(AsString(result));"

• Data on a distributed file system (DFS)

MapReduce WordCount Example

CS61C L37 Inter-machine Parallelism (18) Garcia, Spring 2010 © UCB

MapReduce WordCount Diagram
ah ah er" ah" if or" or uh" or" ah if"

ah:1,1,1,1"

ah:1" if:1 or:1"or:1 uh:1" or:1" ah:1 if:1"

er:1" if:1,1"or:1,1,1"uh:1"

ah:1 ah:1 er:1"

4" 1" 2" 3" 1"

file1" file2" file3" file4" file5" file6" file7"

(ah)" (er)" (if)" (or)" (uh)"

map(String input_key,  
 String input_value):  
 // input_key : doc name  
 // input_value: doc contents  
 for each word w in input_value:  
 EmitIntermediate(w, "1");"

reduce(String output_key,  
 Iterator intermediate_values):  
 // output_key : a word  
 // output_values: a list of counts  
 int result = 0;  
 for each v in intermediate_values:  
 result += ParseInt(v);  
 Emit(AsString(result));"

CS61C L37 Inter-machine Parallelism (19) Garcia, Spring 2010 © UCB

MapReduce WordCount Java code

CS61C L37 Inter-machine Parallelism (20) Garcia, Spring 2010 © UCB

MapReduce in CS61A (and CS3?!)
  Think that’s too much code?

  So did we, and we wanted to teach the Map/Reduce
programming paradigm in CS61A
  “We” = Dan, Brian Harvey and ace undergrads

Matt Johnson, Ramesh Sridharan, Robert Liao, Alex
Rasmussen.

  Google & Intel gave us the cluster you used in Lab!

  You live in Scheme, and send the task to the
cluster in the basement by invoking the fn
mapreduce. Ans comes back as a stream.
  (mapreduce mapper reducer reducer-base input)
  www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-34.html

CS61C L37 Inter-machine Parallelism (21) Garcia, Spring 2010 © UCB

Our Scheme MapReduce interface

CS61C L37 Inter-machine Parallelism (22) Garcia, Spring 2010 © UCB

MapReduce Advantages/Disadvantages
  Now it’s easy to program for many CPUs

  Communication management effectively gone
  I/O scheduling done for us

  Fault tolerance, monitoring
  machine failures, suddenly-slow machines, etc are handled

  Can be much easier to design and program!
  Can cascade several (many?) MapReduce tasks

  But … it further restricts solvable problems
  Might be hard to express problem in MapReduce
  Data parallelism is key

  Need to be able to break up a problem by data chunks

  MapReduce is closed-source (to Google) C++
  Hadoop is open-source Java-based rewrite

CS61C L37 Inter-machine Parallelism (23) Garcia, Spring 2010 © UCB

Peer Instruction

1.  Writing & managing SETI@Home is relatively
straightforward; just hand out & gather data

2.  The majority of the world’s computing power
lives in supercomputer centers

 12
a) FF
b) FT
c) TF
d) TT

CS61C L37 Inter-machine Parallelism (24) Garcia, Spring 2010 © UCB

1.  The heterogeneity of the machines, handling machines
that fail, falsify data. FALSE

2.  Have you considered how many PCs + game devices
exist? Not even close. FALSE

Peer Instruction Answer

1.  Writing & managing SETI@Home is relatively
straightforward; just hand out & gather data

2.  The majority of the world’s computing power
lives in supercomputer centers

 12
a) FF
b) FT
c) TF
d) TT

CS61C L37 Inter-machine Parallelism (25) Garcia, Spring 2010 © UCB

Summary
  Parallelism is necessary

  It looks like it’s the future of computing…
  It is unlikely that serial computing will ever catch up

with parallel computing

  Software parallelism
  Grids and clusters, networked computers
  Two common ways to program:
  Message Passing Interface (lower level)
  MapReduce (higher level, more constrained)

  Parallelism is often difficult
  Speedup is limited by serial portion of code and

communication overhead

CS61C L37 Inter-machine Parallelism (26) Garcia, Spring 2010 © UCB

Bonus slides
  These are extra slides that used to be

included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

  The slides will appear in the order they would
have in the normal presentation

CS61C L37 Inter-machine Parallelism (27) Garcia, Spring 2010 © UCB

To Learn More…
  About MPI…

  www.mpi-forum.org
  Parallel Programming in C with MPI and OpenMP by

Michael J. Quinn

  About MapReduce…
  code.google.com/edu/parallel/
mapreduce-tutorial.html

  labs.google.com/papers/
mapreduce.html

  lucene.apache.org/hadoop/index.html

CS61C L37 Inter-machine Parallelism (28) Garcia, Spring 2010 © UCB

  MPI_Send() and MPI_Receive()
  Basic API calls to send and receive data point-to-point

based on rank (the runtime node ID #)
  We don’t have to worry about networking details
  A few are available: blocking and non-blocking

  MPI_Broadcast()
  One-to-many communication of data
  Everyone calls: one sends, others block to receive

  MPI_Barrier()
  Blocks when called, waits for everyone to call (arrive at

some determined point in the code)
  Synchronization

Basic MPI Functions (1)

CS61C L37 Inter-machine Parallelism (29) Garcia, Spring 2010 © UCB

  MPI_Scatter()
  Partitions an array that exists on a single node
  Distributes partitions to other nodes in rank order

  MPI_Gather()
  Collects array pieces back to single node (in order)

Basic MPI Functions (2)

CS61C L37 Inter-machine Parallelism (30) Garcia, Spring 2010 © UCB

Basic MPI Functions (3)
  MPI_Reduce()

  Perform a “reduction operation” across nodes to
yield a value on a single node

  Similar to accumulate in Scheme
  (accumulate + ‘(1 2 3 4 5))

  MPI can be clever about the reduction
  Pre-defined reduction operations, or make your own

(and abstract datatypes)
  MPI_Op_create()

  MPI_AllToAll()
  Update shared data resource

CS61C L37 Inter-machine Parallelism (31) Garcia, Spring 2010 © UCB

  Communicators - set up node groups
  Startup/Shutdown Functions

  Set up rank and size, pass argc and argv

  “Real” code segment
 main(int argc, char *argv[]){

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 /* Data distribution */ ...
 /* Computation & Communication*/ ...
 /* Result gathering */ ...
 MPI_Finalize();

}

MPI Program Template

