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Folding@home distributed computing 
says GPUs now contribute 66% of total 
performance (~4K/~6K x86 TFLOPS) 
but only 6% (~.3M/~5M) of “CPUs”! 

Lecturer SOE 
Dan Garcia 

http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats	


Thanks to Prof. Demmel for his CS267 slides;  
and Andy Carle & Matt Johnson for CS61C drafts 
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Today’s Outline 
  Amdahl’s Law 
  Motivation for Inter-machine Parallelism 
  Inter-machine parallelism hardware 

  Supercomputing 
  Distributed computing 
  Grid computing 
  Cluster computing 

  Inter-machine parallelism examples 
  Message Passing Interface (MPI) 
  Google’s MapReduce paradigm 
  Programming Challenges 
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•  Applications can almost never be completely parallelized; some serial 
code remains"

•  s is serial fraction of program, P is # of processors"
•  Amdahlʼs law:"
Speedup(P) = Time(1) / Time(P)"
                     ≤ 1 / ( s + [ (1-s) / P) ], and as P  ∞"
                     ≤ 1 / s"
•  Even if the parallel portion of your application speeds up perfectly,  

your performance may be limited by the sequential portion"

Speedup Issues: Amdahl’s Law 

Time"

Number of Processors"

Parallel portion"
Serial portion"

1" 2" 3" 4" 5"
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Big Problems 
  Simulation: the Third Pillar of Science 

  Traditionally perform experiments or build systems 
  Limitations to standard approach: 
  Too difficult – build large wind tunnels 
  Too expensive – build disposable jet 
  Too slow – wait for climate or galactic evolution 
  Too dangerous – weapons, drug design 

  Computational Science: 
  Simulate the phenomenon on computers 
  Based on physical laws and efficient numerical 

methods 
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Example Applications 
  Science & Medicine 

  Global climate modeling 
  Biology: genomics; protein folding; drug design; malaria simulations 
  Astrophysical modeling 
  Computational Chemistry, Material Sciences and Nanosciences 
  SETI@Home : Search for Extra-Terrestrial Intelligence 

  Engineering 
  Semiconductor design 
  Earthquake and structural modeling 
  Fluid dynamics (airplane design) 
  Combustion (engine design) 
  Crash simulation 
  Computational Game Theory (e.g., Chess Databases) 

  Business 
  Rendering computer graphic imagery (CGI), ala Pixar and ILM 
  Financial and economic modeling 
  Transaction processing, web services and search engines 

  Defense 
  Nuclear weapons -- test by simulations 
  Cryptography 
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Performance Requirements 
  Performance terminology 

  the FLOP: FLoating point OPeration 
  “flops” = # FLOP/second is the standard metric for computing power 

  Example: Global Climate Modeling 
  Divide the world into a grid (e.g. 10 km spacing) 
  Solve fluid dynamics equations for each point & minute 

  Requires about 100 Flops per grid point per minute 

  Weather Prediction (7 days in 24 hours):  
  56 Gflops 

  Climate Prediction (50 years in 30 days):  
  4.8 Tflops 

  Perspective 
  Pentium 4 3GHz Desktop Processor 

  ~10 Gflops 
  Climate Prediction would take ~50-100 years 

www.epm.ornl.gov/chammp/chammp.html 

Reference:http://www.hpcwire.com/hpcwire/hpcwireWWW/04/0827/108259.html"



High Resolution 
Climate Modeling 

on NERSC-3  
P. Duffy, et al., LLNL"
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  Supercomputing – like those listed in top500.org 
  Multiple processors “all in one box / room” from one 

vendor that often communicate through shared memory 
  This is often where you find exotic architectures 

  Distributed computing 
  Many separate computers (each with independent CPU, 

RAM, HD, NIC) that communicate through a network 
  Grids (heterogenous computers across Internet) 
  Clusters (mostly homogeneous computers all in one room) 

  Google uses commodity computers to exploit “knee in curve” 
price/performance sweet spot 

  It’s about being able to solve “big” problems,  
not “small” problems faster 
  These problems can be data (mostly) or CPU intensive  

What Can We Do? Use Many CPUs! 
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Distributed Computing Themes 
  Let’s network many disparate machines into 

one compute cluster 
  These could all be the same (easier) or very 

different machines (harder) 
  Common themes 

  “Dispatcher” gives jobs & collects results 
  “Workers” (get, process, return) until done 

  Examples 
  SETI@Home, BOINC, Render farms 
  Google clusters running MapReduce 
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Distributed Computing Challenges 
  Communication is fundamental difficulty 

  Distributing data, updating shared resource, 
communicating results 

  Machines have separate memories, so no usual inter-
process communication – need network 

  Introduces inefficiencies: overhead, waiting, etc. 

  Need to parallelize algorithms 
  Must look at problems from parallel standpoint 
  Tightly coupled problems require frequent 

communication (more of the slow part!) 
  We want to decouple the problem 

  Increase data locality 
  Balance the workload 
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Programming Models: What is MPI? 
  Message Passing Interface (MPI) 

  World’s most popular distributed API 
  MPI is “de facto standard” in scientific computing 
  C and FORTRAN, ver. 2 in 1997 
  What is MPI good for? 

  Abstracts away common network communications 
  Allows lots of control without bookkeeping 
  Freedom and flexibility come with complexity 

  300 subroutines, but serious programs with fewer than 10  

  Basics: 
  One executable run on every node 
  Each node process has a rank ID number assigned 
  Call API functions to send messages 
http://www.mpi-forum.org/ 
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt 
http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids 
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  Deadlock is possible… 
  Seen in CS61A – state of no progress 
  Blocking communication can cause deadlock 

  Large overhead from comm. mismanagement 
  Time spent blocking is wasted cycles 
  Can overlap computation with non-blocking comm. 

  Load imbalance is possible! Dead machines? 
  Things are starting to look hard to code! 

Challenges with MPI 
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Administrivia 
  ?? 
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Upcoming Calendar 

Week # Mon Wed Thu Lab Fri 
#14 

Last week 
o’ classes 

Inter-machine 
Parallelism 

Summary, 
Review, 

Evaluation 
Parallel 

Intra-machine 
Parallelism

(Scott) 
P3 due 

#15 

RRR Week 
Perf comp 

due 11:59pm 

#16 

Finals Week 

Review Sun 
May 9 3-6pm 

10 Evans 

Final Exam 
8-11am in 

Hearst Gym 
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A New Hope: Google’s MapReduce 
  Remember CS61A? 

 (reduce + (map square '(1 2 3)) ⇒ 
(reduce + '(1 4 9)) ⇒  
14 

  We told you “the beauty of pure functional programming is that it’s 
easily parallelizable” 
  Do you see how you could parallelize this? 
  What if the reduce function argument were associative, would that help? 

  Imagine 10,000 machines ready to help you compute anything you 
could cast as a MapReduce problem! 
  This is the abstraction Google is famous for authoring 

(but their reduce not the same as the CS61A’s or MPI’s reduce) 
  Often, their reduce builds a reverse-lookup table for easy query 

  It hides LOTS of difficulty of writing parallel code! 
  The system takes care of load balancing, dead machines, etc. 
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Input & Output: each a set of key/value pairs 
Programmer specifies two functions: 
map (in_key, in_value)   
    list(out_key, intermediate_value) 
  Processes input key/value pair 
  Produces set of intermediate pairs 

reduce (out_key, list(intermediate_value))   
       list(out_value) 
  Combines all intermediate values for a particular key 
  Produces a set of merged output values (usu just one) 

code.google.com/edu/parallel/mapreduce-tutorial.html 

MapReduce Programming Model 
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•  “Mapper” nodes are responsible for the map function 
"// “I do I learn”  (“I”,1), (“do”,1), (“I”,1), (“learn”,1)  
map(String input_key,  
    String input_value):     
    // input_key  : document name (or line of text)     
    // input_value: document contents     
    for each word w in input_value:  
        EmitIntermediate(w, "1"); 

•  “Reducer” nodes are responsible for the reduce function 
"// (“I”,[1,1])  (“I”,2)  
reduce(String output_key,  
       Iterator intermediate_values):  
    // output_key   : a word  
    // output_values: a list of counts  
    int result = 0;  
    for each v in intermediate_values:  
        result += ParseInt(v);  
    Emit(AsString(result));"

• Data on a distributed file system (DFS) 

MapReduce WordCount Example 
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MapReduce WordCount Diagram 
ah ah er" ah" if or" or uh" or" ah if"

ah:1,1,1,1"

ah:1" if:1 or:1"or:1 uh:1" or:1" ah:1 if:1"

er:1" if:1,1"or:1,1,1"uh:1"

ah:1 ah:1 er:1"

4" 1" 2" 3" 1"

file1" file2" file3" file4" file5" file6" file7"

(ah)" (er)" (if)" (or)" (uh)"

map(String input_key,  
    String input_value):     
    // input_key  : doc name     
    // input_value: doc contents     
    for each word w in input_value:  
        EmitIntermediate(w, "1");"

reduce(String output_key,  
       Iterator intermediate_values):  
    // output_key   : a word  
    // output_values: a list of counts  
    int result = 0;  
    for each v in intermediate_values:  
        result += ParseInt(v);  
    Emit(AsString(result));"
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MapReduce WordCount Java code 
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MapReduce in CS61A (and CS3?!) 
  Think that’s too much code? 

  So did we, and we wanted to teach the Map/Reduce 
programming paradigm in CS61A 
  “We” = Dan, Brian Harvey and ace undergrads  

Matt Johnson, Ramesh Sridharan, Robert Liao, Alex 
Rasmussen.  

  Google & Intel gave us the cluster you used in Lab! 

  You live in Scheme, and send the task to the 
cluster in the basement by invoking the fn 
mapreduce. Ans comes back as a stream.  
  (mapreduce mapper reducer reducer-base input) 
  www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-34.html 
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Our Scheme MapReduce interface 
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MapReduce Advantages/Disadvantages 
  Now it’s easy to program for many CPUs 

  Communication management effectively gone 
  I/O scheduling done for us 

  Fault tolerance, monitoring 
  machine failures, suddenly-slow machines, etc are handled 

  Can be much easier to design and program! 
  Can cascade several (many?) MapReduce tasks 

  But … it further restricts solvable problems 
  Might be hard to express problem in MapReduce 
  Data parallelism is key 

  Need to be able to break up a problem by data chunks 

  MapReduce is closed-source (to Google) C++ 
  Hadoop is open-source Java-based rewrite 
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Peer Instruction 

1.  Writing & managing SETI@Home is relatively 
straightforward; just hand out & gather data  

2.  The majority of the world’s computing power 
lives in supercomputer centers 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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1.  The heterogeneity of the machines, handling machines 
that fail, falsify data.  FALSE 

2.  Have you considered how many PCs + game devices 
exist? Not even close. FALSE 

Peer Instruction Answer 

1.  Writing & managing SETI@Home is relatively 
straightforward; just hand out & gather data  

2.  The majority of the world’s computing power 
lives in supercomputer centers 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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Summary 
  Parallelism is necessary 

  It looks like it’s the future of computing… 
  It is unlikely that serial computing will ever catch up 

with parallel computing 

  Software parallelism 
  Grids and clusters, networked computers 
  Two common ways to program: 
  Message Passing Interface (lower level) 
  MapReduce (higher level, more constrained) 

  Parallelism is often difficult 
  Speedup is limited by serial portion of code and 

communication overhead 
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Bonus slides 
  These are extra slides that used to be 

included in lecture notes, but have been 
moved to this, the “bonus” area to serve as a 
supplement. 

  The slides will appear in the order they would 
have in the normal presentation 
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To Learn More… 
  About MPI… 

  www.mpi-forum.org 
  Parallel Programming in C with MPI and OpenMP by 

Michael J. Quinn 

  About MapReduce… 
  code.google.com/edu/parallel/
mapreduce-tutorial.html 

  labs.google.com/papers/
mapreduce.html 

  lucene.apache.org/hadoop/index.html 
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  MPI_Send() and MPI_Receive() 
  Basic API calls to send and receive data point-to-point 

based on rank (the runtime node ID #) 
  We don’t have to worry about networking details  
  A few are available: blocking and non-blocking 

  MPI_Broadcast() 
  One-to-many communication of data 
  Everyone calls: one sends, others block to receive 

  MPI_Barrier() 
  Blocks when called, waits for everyone to call (arrive at 

some determined point in the code) 
  Synchronization 

Basic MPI Functions (1) 
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  MPI_Scatter() 
  Partitions an array that exists on a single node 
  Distributes partitions to other nodes in rank order 

  MPI_Gather() 
  Collects array pieces back to single node (in order) 

Basic MPI Functions (2) 
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Basic MPI Functions (3) 
  MPI_Reduce() 

  Perform a “reduction operation” across nodes to 
yield a value on a single node 

  Similar to accumulate in Scheme 
  (accumulate + ‘(1 2 3 4 5)) 

  MPI can be clever about the reduction 
  Pre-defined reduction operations, or make your own 

(and abstract datatypes) 
  MPI_Op_create() 

  MPI_AllToAll() 
  Update shared data resource 
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  Communicators - set up node groups 
  Startup/Shutdown Functions 

  Set up rank and size, pass argc and argv 

  “Real” code segment 
 main(int argc, char *argv[]){ 

 MPI_Init(&argc, &argv); 
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 MPI_Comm_size(MPI_COMM_WORLD, &size); 
 /* Data distribution */ ... 
 /* Computation & Communication*/ ... 
 /* Result gathering */ ... 
 MPI_Finalize(); 

} 

MPI Program Template 


