

inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures

Lecture 35 – Input / Output 2010-04-21

Lecturer SOE Dan Garcia

We've merged 3 lectures into 1... See 2008Sp for full slides (few Qs plz) **SKINPUT ... USE YOUR BODY AS INPUT!!**

Chris Harrison has developed a system that allows you to touch your skin and control a computer. He shows examples, combined with a pico projector, of dialing a phone number on your hand, etc.

www.chrisharrison.net/projects/skinput/

Recall : 5 components of any Computer

Motivation for Input/Output

- I/O is how humans interact with computers
- I/O gives computers long-term memory.
- I/O lets computers do amazing things:

Read pressure of synthetic hand and control synthetic arm and hand of fireman

- Control propellers, fins, communicate in BOB (Breathable Observable Bubble)
- Computer without I/O like a car w/no wheels; great technology, but gets you nowhere

I/O Device Examples and Speeds

 I/O Speed: bytes transferred per second (from mouse to Gigabit LAN: 7 orders of mag!)

 Device 	Behavior	Partner	Data Rate (KB/s)
Keyboard	Input	Human	0.01
Mouse	Input	Human	0.02
Voice output	Output	Human	5.00
Floppy disk	Storage	Machine	50.00
Laser Printer	Output	Human	100.00
Magnetic Disk	Storage	Machine	10,000.00
Wireless Network	l or O	Machine	10,000.00
Graphics Display	Output	Human	30,000.00

When discussing transfer rates, use 10[×]

Instruction Set Architecture for I/O

- What must the processor do for I/O?
 - Input: reads a sequence of bytes
 Output: writes a sequence of bytes
- Some processors have special input and output instructions
- Alternative model (used by MIPS):
 - Use loads for input, stores for output
 - Called "<u>Memory Mapped Input/Output</u>" 0xFFFFFFF
 - A portion of the address space dedicated to communication paths to I/O devices (no mem there)
 - Instead, they correspond to registers in I/O devices

address

0xFFFF0000

data rec

rea

Processor-I/O Speed Mismatch

- IGHz microprocessor can execute 1 billion load or store instructions per second, or 4,000,000 KB/s data rate
 - I/O devices data rates range from 0.01 KB/s to 125,000 KB/s
- Input: device may not be ready to send data as fast as the processor loads it
 - Also, might be waiting for human to act
- Output: device not be ready to accept data as fast as processor stores it
- What to do?

Processor Checks Status before Acting

- Path to device generally has 2 registers:
 - <u>Control Register</u>, says it's OK to read/write (I/O ready) [think of a flagman on a road]
 - Data Register, contains data
- Processor reads from Control Register in loop, spins while waiting for device to set <u>Ready</u> bit in Control reg (0 \Rightarrow 1) to say its OK
- Processor then loads from (input) or writes to (output) data register
 - Load from or Store into Data Register resets Ready bit (1
 \Rightarrow 0) of Control Register

This is called "Polling"

What is the alternative to polling?

- Wasteful to have processor spend most of its time "spin-waiting" for I/O to be ready
- Would like an unplanned procedure call that would be invoked only when I/O device is ready
- Solution: use exception mechanism to help I/O. Interrupt program when I/O ready, return when done with data transfer

I/O Interrupt

- An I/O interrupt is like overflow exceptions except:
 - An I/O interrupt is "asynchronous"
 - More information needs to be conveyed
- An I/O interrupt is asynchronous with respect to instruction execution:
 - I/O interrupt is not associated with any instruction, but it can happen in the middle of any given instruction
 - I/O interrupt does not prevent any instruction from completion

Interrupt-Driven Data Transfer

Memory

Administrivia

- Project 2 graded face-to-face, check web page for scheduling
- Project 3 (Cache simulator) out
 - You may work in pairs for this project
- Try the performance competition!
 - You may work in pairs for this too
 - Do it for fun!
 - Do it to shine!
 - Do it to test your metttle!
 - Do it for EPA!

Upcoming Calendar

Week #	Mon	Wed	Thu Lab	Fri
#13 This week		I/O P3 out	VM	Performance
#14	Inter-machine	Summary,	Denellol	Intra-machine Parallelism
Last week o' classes	Parallelism	Evaluation	Parallel	(Scott) P3 due
#15				Perf comp
RRR Week				due 11:59pm
#16				
Finals Week				Final Exam
Review Sun May 9 3-6pm 10 Evans				Hearst Gym

www.computerhistory.org/internet_history The Internet (1962)

- Founders
 - JCR Licklider, as head of ARPA, writes on "intergalactic network"
 - 1963 : ASCII becomes first universal computer standard
 - 1969 : Defense Advanced Research Projects Agency (DARPA) deploys 4 "nodes" @ UCLA, SRI, Utah, & UCSB
 - 1973 Robert Kahn & Vint Cerf invent <u>TCP</u>, now part of the <u>Internet Protocol Suite</u>

Internet growth rates

Exponential since start!

www.greatachievements.org/?id=3736
en.wikipedia.org/wiki/Internet_Protocol_Suite

Why Networks?

- Originally sharing I/O devices between computers
 - E.g., printers
- Then communicating between computers
 - E.g., file transfer protocol
- Then communicating between people
 - E.g., e-mail
- Then communicating between networks of computers
 - E.g., file sharing, www, …

en.wikipedia.org/wiki/History_of_the_World_Wide_Web The World Wide Web (1989)

- "System of interlinked hypertext documents on the Internet"
- History
 - 1945: Vannevar Bush describes hypertext system called "memex" in article
 - 1989: Tim Berners-Lee proposes, gets system up '90
 - ~2000 Dot-com entrepreneurs rushed in, 2001 bubble burst
- Wayback Machine
 - Snapshots of web over time
- Today : Access anywhere!

Tim Berners-Lee

World's First web server in 1990

Internet Domain Survey Host Count

Shared vs. Switched Based Networks

Shared vs. Switched:

- Switched: pairs ("point-topoint" connections) communicate at same time
- Shared: 1 at a time (CSMA/CD)
- Aggregate bandwidth (BW) in switched network is many times shared: Node
 - point-to-point faster since no arbitration, simpler interface

Shared

What makes networks work?

 links connecting switches to each other and to computers or devices

- ability to name the components and to route packets of information - messages - from a source to a destination
- Layering, redundancy, protocols, and encapsulation as means of <u>abstraction</u> (61C big idea)

Magnetic Disk – common I/O device

- A kind of computer memory
 - Information stored by magnetizing ferrite material on surface of rotating disk
 - similar to tape recorder except digital rather than analog data

Nonvolatile storage

retains its value without applying power to disk.

Two Types

- Floppy disks slower, less dense, removable.
- Hard Disk Drives (HDD) faster, more dense, non-removable.

Purpose in computer systems (Hard Drive):

- Long-term, inexpensive storage for files
- "Backup" for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)

Photo of Disk Head, Arm, Actuator

Outout (22)

Garcia, Spring 2008 © UCB

Disk Device Terminology

- Several platters, with information recorded magnetically on both surfaces (usually)
- Bits recorded in <u>tracks</u>, which in turn divided into <u>sectors</u> (e.g., 512 Bytes)

<u>Actuator</u> moves <u>head</u> (end of <u>arm</u>) over track (<u>"seek"</u>),
 wait for <u>sector</u> rotate under <u>head</u>, then read or write

Garcia, Spring 2008 © UCB

Disk Device Performance (1/2)

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time? depends on no. tracks to move arm, speed of actuator
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (f(bit density,rpm)), size of request

Disk Device Performance (2/2)

- Average distance of sector from head?
- 1/2 time of a rotation
 - □ 7200 Revolutions Per Minute \Rightarrow 120 Rev/sec
 - □ 1 revolution = $1/120 \text{ sec} \Rightarrow 8.33 \text{ milliseconds}$
 - 1/2 rotation (revolution) \Rightarrow 4.17 ms
- Average no. tracks to move arm?
 - Disk industry standard benchmark:
 - Sum all time for all possible seek distances from all possible tracks / # possible
 - Assumes average seek distance is random
- Size of Disk cache can strongly affect perf!
 - Cache built into disk system, OS knows nothing

Where does Flash memory come in?

- Microdrives and Flash memory (e.g., CompactFlash) are going head-to-head
 - Both non-volatile (no power, data ok)
 - Flash benefits: durable & lower power (no moving parts, need to spin µdrives up/down)
 - Flash limitations: finite number of write cycles (wear on the insulating oxide layer around the charge storage mechanism). Most ≥ 100K, some ≥ 1M W/erase cycles.

How does Flash memory work?

 NMOS transistor with an additional conductor between gate and source/drain which "traps" electrons. The presence/absence is a 1 or 0.

en.wikipedia.org/wiki/Flash_memory

en.wikipedia.org/wiki/lpod www.apple.com/ipod What does Apple put in its iPods?

Garcia, Spring 2008 © UCB

RAID : Redundant Array of Inexpensive Disks

- Invented @ Berkeley (1989)
- A multi-billion industry 80% non-PC disks sold in RAIDs
- Idea:
 - Files are "striped" across multiple disks
 - Redundancy yields high data availability
 - Disks will still fail
 - Contents reconstructed from data redundantly stored in the array
 - \Rightarrow Capacity penalty to store redundant info
 - \Rightarrow Bandwidth penalty to update redundant info

Common RAID configurations

RAID 1 <u>Mirror Data, most expensive sol'n</u>

RAID 3 Parity drive protects against 1 failure

"And in conclusion..."

- I/O gives computers their 5 senses
- I/O speed range is 100-million to one
- Processor speed means must synchronize with I/O devices before use
- Polling works, but expensive
 - processor repeatedly queries devices
- Interrupts works, more complex
 - devices causes an exception, causing
 OS to run and deal with the device
- I/O control leads to Operating Systems

