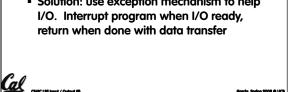


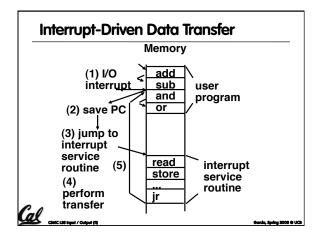
 I/O Speed: byte (from mouse to 		•	
 Device 	Behavior	Partner	Data Rate (KB/s)
Keyboard	Input	Human	0.01
Mouse	Input	Human	0.02
Voice output	Output	Human	5.00
Floppy disk	Storage	Machine	50.00
Laser Printer	Output	Human	100.00
Magnetic Disk	Storage	Machine	10,000.00
Wireless Network	l or O	Machine	10,000.00
Graphics Display	Output	Human	30,000.00
Wired LAN Network	l or O	Machine	125,000.00

Processor-I/O Speed Mismatch

- 1GHz microprocessor can execute 1 billion load or store instructions per second, or 4,000,000 KB/s data rate
 - I/O devices data rates range from 0.01 KB/s to 125,000 KB/s
- Input: device may not be ready to send data as fast as the processor loads it • Also, might be waiting for human to act
- Output: device not be ready to accept data as fast as processor stores it
- What to do?

al

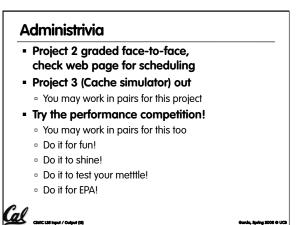

Processor Checks Status before Acting


- Path to device generally has 2 registers:
 - <u>Control Register</u>, says it's OK to read/write
 - (I/O ready) [think of a flagman on a road]
 - Data Register, contains data
- Processor reads from Control Register in loop, spins while waiting for device to set Ready bit in Control reg ($0 \Rightarrow 1$) to say its OK
- Processor then loads from (input) or writes to (output) data register
 - Load from or Store into Data Register resets Ready bit (1) \Rightarrow 0) of Control Register
- This is called "Polling"

Cal

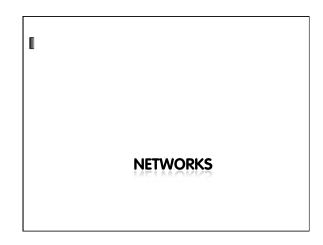
What is the alternative to polling? Wasteful to have processor spend most of its time "spin-waiting" for I/O to be ready Would like an unplanned procedure call that would be invoked only when I/O

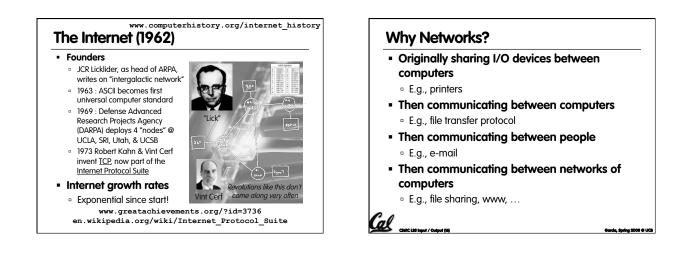
device is ready Solution: use exception mechanism to help I/O. Interrupt program when I/O ready,

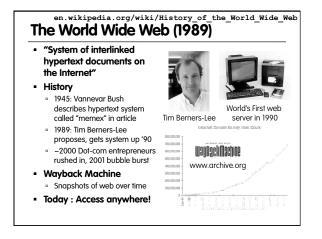


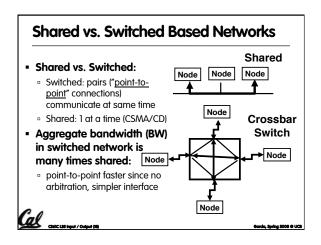
I/O Interrupt

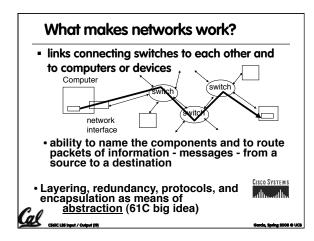
Cal

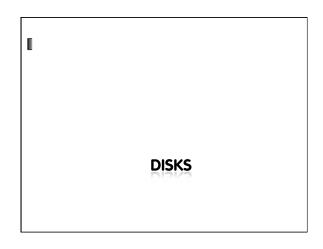

An I/O interrupt is like overflow exceptions except:

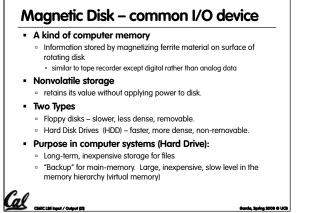

- An I/O interrupt is "asynchronous"
- More information needs to be conveyed
- An I/O interrupt is asynchronous with respect to instruction execution:
 - I/O interrupt is not associated with any instruction, but it can happen in the middle of any given instruction
 - I/O interrupt does not prevent any instruction from completion

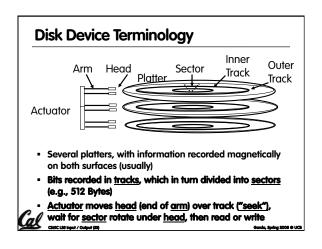


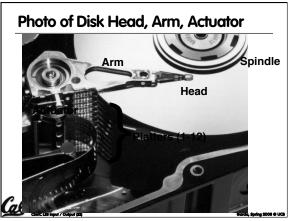

cia, Spring 2008 © UCB

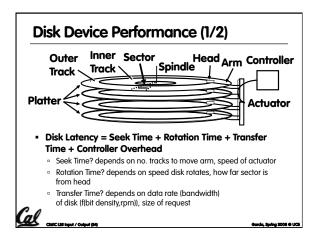

Week #	Mon	Wed	Thu Lab	Fri
#13 This week		I/O P3 out	VM	Performance
#14 Last week o' classes	Inter-machine Parallelism	Summary, Review, Evaluation	Parallel	Intra-machine Parallelism (Scott) P3 due
#15 RRR Week				Perf comp due 11:59pm
#16 Finals Week Review Sun May 9 3-6pm 10 Evans				Final Exam 8-11am in Hearst Gym

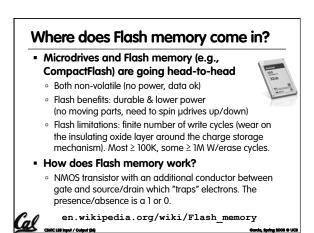


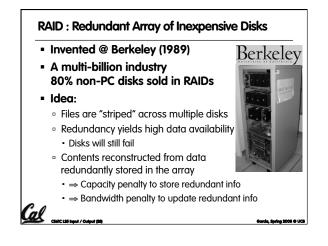


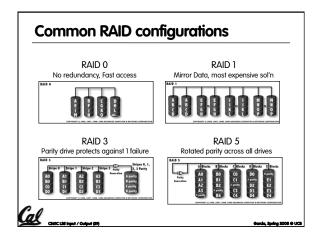









- Average distance of sector from head?
- 1/2 time of a rotation


Cal

- □ 7200 Revolutions Per Minute \Rightarrow 120 Rev/sec
- $\circ~$ 1 revolution = 1/120 sec \Rightarrow 8.33 milliseconds
- 1/2 rotation (revolution) \Rightarrow 4.17 ms
- Average no. tracks to move arm?
 - Disk industry standard benchmark:
 - Sum all time for all possible seek distances from all possible tracks / # possible
 - Assumes average seek distance is random
- Size of Disk cache can strongly affect perf!
 Cache built into disk system, OS knows nothing

en.wikipedia.org/wiki/lpod www.apple.com/ipod What does Apple put in its iPods? Samsung flash 4, 8GB Toshiba flash Toshiba 1.8-inch HDD Toshiba flash 1, 2GB 80, 160GB 8, 16, 32GB 22 🔲 16 🗖 S II 🐼 shuffle, classic, touch nano Cal

 I/O gives computers their 5 set 	enses
I/O speed range is 100-million	n to one
 Processor speed means must with I/O devices before use 	synchronize
Polling works, but expensive	
processor repeatedly queries dev	vices
Interrupts works, more compl	ex
 devices causes an exception, can OS to run and deal with the device 	5
I/O control leads to Operating	- Sustana