inst.eecs.berkeley.edu/~csé6lc

UCB CS61C : Machine Structures Review Address Mapping: Page Table
Lecture 34 - Virtual Memory Il Virtual Address:
2010-04-19
\ L
Lecturer SOE Page Table
Dan Garcia Page Table
$31,600 FOR AN ATARI 2600 VIDEO GAME? LB LY S8
- index Val i Access :Physical

Tanner Sandlin found a rare video -

into -id iRights :Page
game in his house, put it on eBay page Address | physical
and just sold it for almost $32K! table Memory

Some articles have called this the
“holy grail” of Atari 2600 games...

www .neoseeker.com/news/13615-very-rare- Page Table located in physical memory
atari-2600-air-raid-game-sells-for-31-600-usd/

Address

Garda, e

Fetching data on a memory read Address Translation using TLB
« Check TLB (input: VPN, output: PPN) Viriual AQTress
= hit: fetch translation 1
= miss: check page table (in memory) TLB TCIg I INDEX Offset |
= Page table hit: fetch translation
= Page table miss: page fault, fetch page from disk to memory, return translation to TLB M
= Check cache (input: PPN, output: data)
= hit: return value TB TClg P.P.N,
= miss: fetch value from memory, remember it in cache, return value (Tog used Physiccl
. just like Page
hials hit pa | _ Main in cache) Nungber
Processor N Cache|miss TIBT
Lockup Memery ——— [
. PPN Offset
Tmiss | | ht data -
Data Cache Physical Address
Trans- Tag ; Data
@ lation @ Tag : Data

Typical TLB Format What if not in TLB?
Physical | Dirty [Ref [Valid |Access = Option 1: Hardware checks page table and
Tag Page # Rights loads new Page Table Entry into TLB

= Option 2: Hardware traps to OS, up to OS to
decide what to do
o MIPS follows Option 2: Hardware knows nothing
about page table

a Atrap is a synchronous exception in a user process,
often resulting in the OS taking over and performing
some action before returning to the program.

* More about exceptions next lecture

= TLB just a cache on the page table mappings
= TLB access time comparable to cache
(much less than main memory access time)

= Dirty: since use write back, need to know whether or not
to write page to disk when replaced

= Ref: Used to help calculate LRU on replacement
= Cleared by OS periodically, then checked to see if page was

@ referenced @

What if the data is on disk?

= We load the page off the disk into a free
block of memory, using a DMA transfer (Direct
Memory Access - special hardware support
to avoid processor)
s Meantime we switch to some other process waiting

to be run

= When the DMA is complete, we get an

interrupt and update the process's page table

s So when we switch back to the task, the desired
data will be in memory

474 -

What if we don’t have enough memory?

= We chose some other page belonging to a
program and transfer it onto the disk if it is
dirty
o If clean (disk copy is up-to-date),
just overwrite that data in memory
o We chose the page to evict based on replacement
policy (e.g., LRU)
And update that program's page table to
reflect the fact that its memory moved
somewhere else

= If continuously swap between disk and

@ memory, called Thrashing

Question (1/3)

=_40-bit virtual address, 16 KB page
| Virtual Page Number (? bits) | Page Offset (2 bits) |

= 36-bit physical address
I Physical Page Number (? bits) lPage Offset (? bits) I

= Number of bits in
Virtual Page Number/Page offset,
Physical Page Number/Page offset?
22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16,20/16
3: 26/14, 22/14
4: 26/14,26/10
5: 28/12,24/12

474 -

[

Question (2/3): 40b VA, 36b PA

= 2-way set-assoc. TLB, 512 entries, 40b VA:
| LB Tag (2 bits) | TLB Index (2 bits) |Page Offset (14 bits) |
» TLB Entry: Valid bit, Dirty bit,
Access Control (say 2 bits),
Virtual Page Number, Physical Page Number
| v| D| Access (2 bits) | TLB Tag (? bits) |Physical Page No. (? bits) |
= Number of bits in TLB Tag / Index / Entry?

1: 12/14/38 (TLB Tag/ Index / Entry)
2: 14/12/40

3: 18/ 8/44
4: 18

Question (3/3)

= 2-way set-assoc, 64KB data cache, 64B block

I Cache Tag (? bits)ICache Index (? bits) IBIock Offset (? bits‘
Physical Page Address (36 bits)

= Data Cache Entry: Valid bit, Dirty bit, Cache
tag + ? bits of Data

[v[o| cacheTag(2bits) | | cache Data(2bits) |
= Number of bits in Data cache Tag / Index /

Offset Entry?
: 12 5 9/14 37 (Tag/Index/Offset/Entry)

N

—
NN
O©OOO O~
NN
OO
NN
Q10001

474 -

And in Conclusion...

= Virtual memory to Physical Memory

Translation too slow?

= Add a cache of Virtual to Physical Address
Translations, called a TLB

Spatial Locality means Working Set of Pages

is all that must be in memory for process to

run fairly well

= Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk

#7 -

4 Qs for any Memory Hierarchy

= Q1: Where can a block be placed?
= One place (direct mapped)
= Afew places (set associative)
= Any place (fully associative)
= Q2: How is a block found?
= Indexing (as in a direct-mapped cache)
= Limited search (as in a set-associative cache)
= Full search (as in a fully associative cache)
= Separate lookup table (as in a page table)
= Q3: Which block is replaced on a miss?
= Least recently used (LRU)
= Random
* Q4: How are writes handled?
= Write through (Level never inconsistent w/lower)
= Write back (Could be “dirty”, must have dirty bit)

474 -

Q2: How is a block found in upper level?

[Block Address [Block
| Tag [Jndex | offset
)
Set Select
Data Select

= Direct indexing (using index and block
offset), tag compares, or combination

* Increasing associativity shrinks index,
expands tag

474 -

Q4: What to do on a write hit?

= Write-through

= update the word in cache block and corresponding
word in memory

= Write-back
update word in cache block
allow memory word to be “stale”

=> add ‘dirty’ bit to each line indicating that memory
be updated when block is replaced

=> OS flushes cache before I/0 11!

= Performance trade-offs?
= WT: read misses cannot result in writes
= WB: no writes of repeated writes

o

o

o

o

Q1: Where block placed in upper level?

= Block #12 placed in 8 block cache:
o Fully associative
o Direct mapped
= 2-way set associative
* Set Associative Mapping = Block # Mod # of Sets

Block 01234567
Block 01234567 o 01234567 E{I)ock
no.

Set Set Set Set
Fully associative: 01 2 3

Direct mapped:

block n12 can go block 12 can go Set associative:

anywhere only into block 4 block 12 can go
(12 mod 8) anywhere in set 0

(12 mod 4)
74 —

Q3: Which block replaced on a miss?

=Easy for Direct Mapped
=Set Associative or Fully Associative:

= Random

a LRU (Least Recently Used)
Miss Rates
Associativity: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 52% 57% 47% 53% 44% 50%
64 KB 19% 2.0% 15% 17% 1.4% 1.5%
256 KB 115% 1.17% 113% 113% 1.12% 1.12%

474 —

Three Advantages of Virtual Memory

= 1) Translation:

= Program can be given consistent view of memory,
even though physical memory is scrambled

= Makes multiple processes reasonable

= Only the most important part of program (“Working
Set’) must be in physical memory

a Contiguous structures (like stacks) use only as much
physical memory as necessary yet still grow later

#7 —

Three Advantages of Virtual Memory

= 2) Protection:
Different processes protected from each other
Different pages can be given special behavior
* (Read Only, Invisible to user programs, etc).
Kernel data protected from User programs
Very important for protection from malicious programs =
Far more “viruses” under Microsoft Windows
Special Mode in processor (“Kernel mode”) allows
processor to change page table/TLB
= 3) Sharing:

= Can map same physical page to multiple users

(“Shared memory”)

474 -

o

o

o

o

o

Bonus slide: Virtual Memory Overview (1/3)

= User program view of memory:
= Contiguous
o Start from some set address
o Infinitely large
a |s the only running program
= Reality:
= Non-contiguous
= Start wherever available memory is
= Finite size
= Many programs running at a time

474 -

Bonus slide: Virtual Memory Overview (3/3)

= Implementation:
= Divide memory into “chunks” (pages)

= Operating system controls page table that maps
virtual addresses into physical addresses

a Think of memory as a cache for disk
o TLB is a cache for the page table

Why Translation Lookaside Buffer (TLB)?

= Paging is most popular implementation of
virtual memory
(vs. base/bounds)

= Every paged virtual memory access must be
checked against Entry of Page Table in
memory to provide protection / indirection

= Cache of Page Table Entries (TLB) makes
address translation possible without memory
access in common case to make fast

#74 —

Bonus slide: Virtual Memory Overview (2/3)

= Virtual memory provides:
o illusion of contiguous memory
o all programs starting at same set address

o illusion of ~ infinite memory
(232 or 264 bytes)

= protection

474 —

Address Map, Mathematically
vV={0,1,...,n-1} virtual address space (n > m)
M={0,1,..., m-1} physical address space

MAP: V --> M U {6} address mapping function

MAP(a) = a' if data at virtual address a
is present in physical address a' and a'in M
= ¢ if data at virtual address a is not presentin M

2 {Name Spacev] fadefout

Name Space V 0S fault
Processor handler]

Addr Trans Main [Disk

a [Mechanism—|Memory |+~

physical (015} perLorms
cuciwmanemizg address this transfer . suzwous

