
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 34 – Virtual Memory II
 2010-04-19

Tanner Sandlin found a rare video
game in his house, put it on eBay
and just sold it for almost $32K!
Some articles have called this the
“holy grail” of Atari 2600 games…

Lecturer SOE
Dan Garcia

www.neoseeker.com/news/13615-very-rare-
atari-2600-air-raid-game-sells-for-31-600-usd/ CS61C L34 Virtual Memory II (3) Garcia, Spring 2010 © UCB

Review Address Mapping: Page Table
Virtual Address:

page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into

page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

CS61C L34 Virtual Memory II (4) Garcia, Spring 2010 © UCB

Fetching data on a memory read
  Check TLB (input: VPN, output: PPN)

  hit: fetch translation
  miss: check page table (in memory)

  Page table hit: fetch translation
  Page table miss: page fault, fetch page from disk to memory, return translation to TLB

  Check cache (input: PPN, output: data)
  hit: return value
  miss: fetch value from memory, remember it in cache, return value

Processor TLB
Lookup

Cache Main
Memory

VA PA
miss

hit data

Trans-
lation

hit

miss

CS61C L34 Virtual Memory II (5) Garcia, Spring 2010 © UCB

Address Translation using TLB

PPN Offset
Physical Address

VPN
Offset

Virtual Address

INDEX

TLB

Physical
Page

Number
P. P. N.

P. P. N.
...

TLB Tag
(Tag used
just like

in cache)
TLB Tag

Tag Offset INDEX
Data Cache

Tag Data
Tag Data

TLB Tag

CS61C L34 Virtual Memory II (6) Garcia, Spring 2010 © UCB

Typical TLB Format

  TLB just a cache on the page table mappings
  TLB access time comparable to cache

 (much less than main memory access time)
  Dirty: since use write back, need to know whether or not

to write page to disk when replaced
  Ref: Used to help calculate LRU on replacement

  Cleared by OS periodically, then checked to see if page was
referenced

 Physical Dirty Ref Valid Access
 Tag Page # Rights

CS61C L34 Virtual Memory II (7) Garcia, Spring 2010 © UCB

What if not in TLB?
  Option 1: Hardware checks page table and

loads new Page Table Entry into TLB
  Option 2: Hardware traps to OS, up to OS to

decide what to do
  MIPS follows Option 2: Hardware knows nothing

about page table
  A trap is a synchronous exception in a user process,

often resulting in the OS taking over and performing
some action before returning to the program.
  More about exceptions next lecture

CS61C L34 Virtual Memory II (8) Garcia, Spring 2010 © UCB

What if the data is on disk?
  We load the page off the disk into a free

block of memory, using a DMA transfer (Direct
Memory Access – special hardware support
to avoid processor)
  Meantime we switch to some other process waiting

to be run

  When the DMA is complete, we get an
interrupt and update the process's page table
  So when we switch back to the task, the desired

data will be in memory

CS61C L34 Virtual Memory II (9) Garcia, Spring 2010 © UCB

What if we don’t have enough memory?
  We chose some other page belonging to a

program and transfer it onto the disk if it is
dirty
  If clean (disk copy is up-to-date),

just overwrite that data in memory
  We chose the page to evict based on replacement

policy (e.g., LRU)

  And update that program's page table to
reflect the fact that its memory moved
somewhere else

  If continuously swap between disk and
memory, called Thrashing

CS61C L34 Virtual Memory II (11) Garcia, Spring 2010 © UCB

Question (1/3)
  40-bit virtual address, 16 KB page

  36-bit physical address

  Number of bits in
Virtual Page Number/Page offset,
Physical Page Number/Page offset?

Page Offset (? bits)"Virtual Page Number (? bits)"

Page Offset (? bits)"Physical Page Number (? bits)"

!1: 22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16, 20/16
3: 26/14, 22/14
4: 26/14, 26/10
5: 28/12, 24/12 "

CS61C L34 Virtual Memory II (13) Garcia, Spring 2010 © UCB

Question (2/3): 40b VA, 36b PA
  2-way set-assoc. TLB, 512 entries, 40b VA:

  TLB Entry: Valid bit, Dirty bit,
Access Control (say 2 bits),
Virtual Page Number, Physical Page Number

  Number of bits in TLB Tag / Index / Entry?

Page Offset (14 bits)"TLB Index (? bits)"TLB Tag (? bits)"

V" D" TLB Tag (? bits)"Access (2 bits)" Physical Page No. (? bits)"

!1: 12 / 14 / 38 (TLB Tag / Index / Entry)
2: 14 / 12 / 40
3: 18 / 8 / 44
4: 18 / 8 / 58 "

CS61C L34 Virtual Memory II (15) Garcia, Spring 2010 © UCB

Question (3/3)
  2-way set-assoc, 64KB data cache, 64B block

  Data Cache Entry: Valid bit, Dirty bit, Cache
tag + ? bits of Data

  Number of bits in Data cache Tag / Index /
Offset / Entry?

Block Offset (? bits)"
Physical Page Address (36 bits)"

Cache Index (? bits)"Cache Tag (? bits)"

V" D" Cache Tag (? bits)" Cache Data (? bits)"

!1: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)
2: 20 / 10 / 6 / 86
3: 20 / 10 / 6 / 534
4: 21 / 9 / 6 / 87
5: 21 / 9 / 6 / 535 "

CS61C L34 Virtual Memory II (17) Garcia, Spring 2010 © UCB

And in Conclusion…
  Virtual memory to Physical Memory

Translation too slow?
  Add a cache of Virtual to Physical Address

Translations, called a TLB

  Spatial Locality means Working Set of Pages
is all that must be in memory for process to
run fairly well

  Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk

CS61C L34 Virtual Memory II (19) Garcia, Spring 2010 © UCB

4 Qs for any Memory Hierarchy
  Q1: Where can a block be placed?

  One place (direct mapped)
  A few places (set associative)
  Any place (fully associative)

  Q2: How is a block found?
  Indexing (as in a direct-mapped cache)
  Limited search (as in a set-associative cache)
  Full search (as in a fully associative cache)
  Separate lookup table (as in a page table)

  Q3: Which block is replaced on a miss?
  Least recently used (LRU)
  Random

  Q4: How are writes handled?
  Write through (Level never inconsistent w/lower)
  Write back (Could be “dirty”, must have dirty bit)

CS61C L34 Virtual Memory II (20) Garcia, Spring 2010 © UCB

Q1: Where block placed in upper level?
  Block #12 placed in 8 block cache:

  Fully associative
  Direct mapped
  2-way set associative

  Set Associative Mapping = Block # Mod # of Sets

0 1 2 3 4 5 6 7 Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7 Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7 Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

CS61C L34 Virtual Memory II (21) Garcia, Spring 2010 © UCB

  Direct indexing (using index and block
offset), tag compares, or combination

  Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

CS61C L34 Virtual Memory II (22) Garcia, Spring 2010 © UCB

 Easy for Direct Mapped
 Set Associative or Fully Associative:

  Random
  LRU (Least Recently Used)

Miss Rates
Associativity: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

CS61C L34 Virtual Memory II (23) Garcia, Spring 2010 © UCB

Q4: What to do on a write hit?
  Write-through

  update the word in cache block and corresponding
word in memory

  Write-back
  update word in cache block
  allow memory word to be “stale”
  => add ‘dirty’ bit to each line indicating that memory

be updated when block is replaced
  => OS flushes cache before I/O !!!

  Performance trade-offs?
  WT: read misses cannot result in writes
  WB: no writes of repeated writes

CS61C L34 Virtual Memory II (24) Garcia, Spring 2010 © UCB

Three Advantages of Virtual Memory
  1) Translation:

  Program can be given consistent view of memory,
even though physical memory is scrambled

  Makes multiple processes reasonable
  Only the most important part of program (“Working

Set”) must be in physical memory
  Contiguous structures (like stacks) use only as much

physical memory as necessary yet still grow later

CS61C L34 Virtual Memory II (25) Garcia, Spring 2010 © UCB

Three Advantages of Virtual Memory
  2) Protection:

  Different processes protected from each other
  Different pages can be given special behavior

  (Read Only, Invisible to user programs, etc).

  Kernel data protected from User programs
  Very important for protection from malicious programs ⇒

Far more “viruses” under Microsoft Windows
  Special Mode in processor (“Kernel mode”) allows

processor to change page table/TLB

  3) Sharing:
  Can map same physical page to multiple users

(“Shared memory”)

CS61C L34 Virtual Memory II (26) Garcia, Spring 2010 © UCB

Why Translation Lookaside Buffer (TLB)?
  Paging is most popular implementation of

virtual memory
(vs. base/bounds)

  Every paged virtual memory access must be
checked against Entry of Page Table in
memory to provide protection / indirection

  Cache of Page Table Entries (TLB) makes
address translation possible without memory
access in common case to make fast

CS61C L34 Virtual Memory II (27) Garcia, Spring 2010 © UCB

Bonus slide: Virtual Memory Overview (1/3)
  User program view of memory:

  Contiguous
  Start from some set address
  Infinitely large
  Is the only running program

  Reality:
  Non-contiguous
  Start wherever available memory is
  Finite size
  Many programs running at a time

CS61C L34 Virtual Memory II (28) Garcia, Spring 2010 © UCB

Bonus slide: Virtual Memory Overview (2/3)

  Virtual memory provides:
  illusion of contiguous memory
  all programs starting at same set address
  illusion of ~ infinite memory

(232 or 264 bytes)
  protection

CS61C L34 Virtual Memory II (29) Garcia, Spring 2010 © UCB

Bonus slide: Virtual Memory Overview (3/3)

  Implementation:
  Divide memory into “chunks” (pages)
  Operating system controls page table that maps

virtual addresses into physical addresses
  Think of memory as a cache for disk
  TLB is a cache for the page table

CS61C L34 Virtual Memory II (30) Garcia, Spring 2010 © UCB

Address Map, Mathematically
V = {0, 1, . . . , n - 1} virtual address space (n > m)
M = {0, 1, . . . , m - 1} physical address space
MAP: V --> M U {θ} address mapping function

MAP(a) = a' if data at virtual address a
is present in physical address a' and a' in M
= θ if data at virtual address a is not present in M

Processor
Name Space V a

Addr Trans
Mechanism a

Main
Memory

a'
physical
address

 Disk

OS performs
this transfer

OS fault
handler

0

page fault

