
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 32 – Caches III
 2010-04-14

In an attempt to stem the tide of corporate
users moving their data to Google Docs,
Microsoft will offer free (ad-supported) versions
of their software that runs on the web. MS gets
60% profits from Office Suite, it’s scramble time!

Lecturer SOE
Dan Garcia

technologyreview.com/web/25029/

CS61C L32 Caches III (2) Garcia, Spring 2010 © UCB

  Mechanism for transparent movement of data
among levels of a storage hierarchy
  set of address/value bindings
  address ⇒ index to set of candidates
  compare desired address with tag
  service hit or miss
  load new block and binding on miss

Valid	

Tag	
 0xc-f	
 0x8-b	
 0x4-7	
 0x0-3	

0	

1	

2	

3	

...	

1" 0" d" c" b" a"

000000000000000000 0000000001 1100"
address: tag index offset

Review

CS61C L32 Caches III (3) Garcia, Spring 2010 © UCB

What to do on a write hit?
  Write-through

  update the word in cache block and corresponding
word in memory

  Write-back
  update word in cache block
  allow memory word to be “stale”
  ⇒ add ‘dirty’ bit to each block indicating that

memory needs to be updated when block is
replaced

  ⇒ OS flushes cache before I/O…

  Performance trade-offs?

CS61C L32 Caches III (4) Garcia, Spring 2010 © UCB

Block Size Tradeoff (1/3)
  Benefits of Larger Block Size

  Spatial Locality: if we access a given word, we’re
likely to access other nearby words soon

  Very applicable with Stored-Program Concept: if we
execute a given instruction, it’s likely that we’ll
execute the next few as well

  Works nicely in sequential array accesses too

CS61C L32 Caches III (5) Garcia, Spring 2010 © UCB

Block Size Tradeoff (2/3)
  Drawbacks of Larger Block Size

  Larger block size means larger miss penalty
  on a miss, takes longer time to load a new block from

next level

  If block size is too big relative to cache size, then
there are too few blocks
  Result: miss rate goes up

  In general, minimize
Average Memory Access Time (AMAT)

 = Hit Time
 + Miss Penalty x Miss Rate

CS61C L32 Caches III (6) Garcia, Spring 2010 © UCB

Block Size Tradeoff (3/3)
  Hit Time

  time to find and retrieve data from current level
cache

  Miss Penalty
  average time to retrieve data on a current level miss

(includes the possibility of misses on successive
levels of memory hierarchy)

  Hit Rate
  % of requests that are found in current level cache

  Miss Rate
  1 - Hit Rate

CS61C L32 Caches III (7) Garcia, Spring 2010 © UCB

Extreme Example: One Big Block

  Cache Size = 4 bytes Block Size = 4 bytes
  Only ONE entry (row) in the cache!

  If item accessed, likely accessed again soon
  But unlikely will be accessed again immediately!

  The next access will likely to be a miss again
  Continually loading data into the cache but

discard data (force out) before use it again
  Nightmare for cache designer: Ping Pong Effect

 Cache Data"Valid Bit"
B 0	
B 1	
B 3	

Tag	

B 2	

CS61C L32 Caches III (8) Garcia, Spring 2010 © UCB

Block Size Tradeoff Conclusions
Miss
Penalty

Block Size	

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size	

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size	

CS61C L32 Caches III (9) Garcia, Spring 2010 © UCB

Types of Cache Misses (1/2)
  “Three Cs” Model of Misses
  1st C: Compulsory Misses

  occur when a program is first started
  cache does not contain any of that program’s data

yet, so misses are bound to occur
  can’t be avoided easily, so won’t focus on these in

this course

CS61C L32 Caches III (10) Garcia, Spring 2010 © UCB

Types of Cache Misses (2/2)
  2nd C: Conflict Misses

  miss that occurs because two distinct memory
addresses map to the same cache location

  two blocks (which happen to map to the same
location) can keep overwriting each other

  big problem in direct-mapped caches
  how do we lessen the effect of these?

  Dealing with Conflict Misses
  Solution 1: Make the cache size bigger
  Fails at some point

  Solution 2: Multiple distinct blocks can fit in the same
cache Index?

CS61C L32 Caches III (11) Garcia, Spring 2010 © UCB

Fully Associative Cache (1/3)
  Memory address fields:

  Tag: same as before
  Offset: same as before
  Index: non-existant

  What does this mean?
  no “rows”: any block can go anywhere in the cache
  must compare with all tags in entire cache to see if

data is there

CS61C L32 Caches III (12) Garcia, Spring 2010 © UCB

Fully Associative Cache (2/3)
  Fully Associative Cache (e.g., 32 B block)

  compare tags in parallel

Byte Offset	

:	

 Cache Data	

B 0	

0	
4	
31	

:	

Cache Tag (27 bits long)	

Valid	

:	

B 1	
B 31	
 :	

 Cache Tag	

=	

=	

=	

=	

=	

:	

CS61C L32 Caches III (13) Garcia, Spring 2010 © UCB

Fully Associative Cache (3/3)
  Benefit of Fully Assoc Cache

  No Conflict Misses (since data can go anywhere)

  Drawbacks of Fully Assoc Cache
  Need hardware comparator for every single entry: if

we have a 64KB of data in cache with 4B entries, we
need 16K comparators: infeasible

CS61C L32 Caches III (14) Garcia, Spring 2010 © UCB

Final Type of Cache Miss
  3rd C: Capacity Misses

  miss that occurs because the cache has a limited
size

  miss that would not occur if we increase the size of
the cache

  sketchy definition, so just get the general idea

  This is the primary type of miss for Fully
Associative caches.

CS61C L32 Caches III (15) Garcia, Spring 2010 © UCB

N-Way Set Associative Cache (1/3)
  Memory address fields:

  Tag: same as before
  Offset: same as before
  Index: points us to the correct “row” (called a set in

this case)

  So what’s the difference?
  each set contains multiple blocks
  once we’ve found correct set, must compare with all

tags in that set to find our data

CS61C L32 Caches III (16) Garcia, Spring 2010 © UCB

Associative Cache Example

  Here’s a simple 2-way
set associative cache.

Memory	

Memory ���
Address	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

A	

B	

C	

D	

E	

F	

Cache 	

Index	

0	

0	

1	

1	

CS61C L32 Caches III (17) Garcia, Spring 2010 © UCB

N-Way Set Associative Cache (2/3)
  Basic Idea

  cache is direct-mapped w/respect to sets
  each set is fully associative with N blocks in it

  Given memory address:
  Find correct set using Index value.
  Compare Tag with all Tag values in the determined

set.
  If a match occurs, hit!, otherwise a miss.
  Finally, use the offset field as usual to find the desired

data within the block.

CS61C L32 Caches III (18) Garcia, Spring 2010 © UCB

N-Way Set Associative Cache (3/3)
  What’s so great about this?

  even a 2-way set assoc cache avoids a lot of conflict
misses

  hardware cost isn’t that bad: only need N
comparators

  In fact, for a cache with M blocks,
  it’s Direct-Mapped if it’s 1-way set assoc
  it’s Fully Assoc if it’s M-way set assoc
  so these two are just special cases of the more

general set associative design

CS61C L32 Caches III (19) Garcia, Spring 2010 © UCB

4-Way Set Associative Cache Circuit

tag"
index"

CS61C L32 Caches III (20) Garcia, Spring 2010 © UCB

Block Replacement Policy
  Direct-Mapped Cache

  index completely specifies position which position a block can go in
on a miss

  N-Way Set Assoc
  index specifies a set, but block can occupy any position within the

set on a miss

  Fully Associative
  block can be written into any position

  Question: if we have the choice, where should we write
an incoming block?
  If there are any locations with valid bit off (empty), then usually write

the new block into the first one.
  If all possible locations already have a valid block, we must pick a

replacement policy: rule by which we determine which block gets
“cached out” on a miss.

CS61C L32 Caches III (21) Garcia, Spring 2010 © UCB

Block Replacement Policy: LRU
  LRU (Least Recently Used)

  Idea: cache out block which has been accessed
(read or write) least recently

  Pro: temporal locality ⇒ recent past use implies
likely future use: in fact, this is a very effective policy

  Con: with 2-way set assoc, easy to keep track (one
LRU bit); with 4-way or greater, requires complicated
hardware and much time to keep track of this

CS61C L32 Caches III (22) Garcia, Spring 2010 © UCB

Block Replacement Example
  We have a 2-way set associative cache with

a four word total capacity and one word
blocks. We perform the following word
accesses (ignore bytes for this problem):

 0, 2, 0, 1, 4, 0, 2, 3, 5, 4
  How many hits and how many misses will

there be for the LRU block replacement
policy?

CS61C L32 Caches III (23) Garcia, Spring 2010 © UCB

Block Replacement Example: LRU

Addresses 0, 2, 0, 1, 4, 0, ...

0" lru"

2"

1" lru"

loc 0" loc 1"
set 0"

set 1"

0" 2"lru"set 0"
set 1"

 0: miss, bring into set 0 (loc 0)"

 2: miss, bring into set 0 (loc 1)"

 0: hit"

 1: miss, bring into set 1 (loc 0)"

 4: miss, bring into set 0 (loc 1, replace 2)"

 0: hit"

0"set 0"
set 1"

lru"lru"

0" 2"set 0"
set 1"

lru" lru"

set 0"
set 1"

0"
1" lru"

lru"2"4"lru"

set 0"
set 1"

0" 4"
1" lru"

lru" lru"

CS61C L32 Caches III (24) Garcia, Spring 2010 © UCB

Big Idea
  How to choose between associativity, block

size, replacement & write policy?
  Design against a performance model

  Minimize: Average Memory Access Time
 = Hit Time

 + Miss Penalty x Miss Rate
  influenced by technology & program behavior

  Create the illusion of a memory that is large,
cheap, and fast - on average

  How can we improve miss penalty?

CS61C L32 Caches III (25) Garcia, Spring 2010 © UCB

Improving Miss Penalty
  When caches first became popular, Miss

Penalty ~ 10 processor clock cycles
  Today 2400 MHz Processor (0.4 ns per clock

cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc" $2"

D
R

AM
"

$"

MEM"

Solution: another cache between memory and the
processor cache: Second Level (L2) Cache

CS61C L32 Caches III (26) Garcia, Spring 2010 © UCB

Peer Instruction

1.  A 2-way set-associative cache can be
outperformed by a direct-mapped cache.

2.  Larger block size ⇒ lower miss rate

 12
a) FF
b) FT
c) TF
d) TT

CS61C L32 Caches III (27) Garcia, Spring 2010 © UCB

Peer Instruction Answer
1.  Sure, consider the caches from the previous

slides with the following workload: 0, 2, 0, 4, 2
2-way: 0m, 2m, 0h, 4m, 2m;
DM: 0m, 2m, 0h, 4m, 2h

2.  Larger block size ⇒ lower miss rate, true until a
certain point, and then the ping-pong effect
takes over

1.  A 2-way set-associative cache can be
outperformed by a direct-mapped cache.

2.  Larger block size ⇒ lower miss rate

 12
a) FF
b) FT
c) TF
d) TT

CS61C L32 Caches III (28) Garcia, Spring 2010 © UCB

And in Conclusion…
  We’ve discussed memory caching in detail. Caching in general

shows up over and over in computer systems
  Filesystem cache, Web page cache, Game databases / tablebases,

Software memoization, Others?

  Big idea: if something is expensive but we want to do it repeatedly,
do it once and cache the result.

  Cache design choices:
  Size of cache: speed v. capacity
  Block size (i.e., cache aspect ratio)
  Write Policy (Write through v. write back
  Associativity choice of N (direct-mapped v. set v. fully associative)
  Block replacement policy
  2nd level cache?
  3rd level cache?

  Use performance model to pick between choices, depending on
programs, technology, budget, ...

CS61C L32 Caches III (29) Garcia, Spring 2010 © UCB

Bonus slides
  These are extra slides that used to be

included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

  The slides will appear in the order they would
have in the normal presentation

CS61C L32 Caches III (30) Garcia, Spring 2010 © UCB

Analyzing Multi-level cache hierarchy

Proc" $2"

D
R

AM
"

$"

L1 hit "
time"

L1 Miss Rate"
L1 Miss Penalty"Avg Mem Access Time = "

"L1 Hit Time + L1 Miss Rate * L1 Miss Penalty"
L1 Miss Penalty = "

"L2 Hit Time + L2 Miss Rate * L2 Miss Penalty"
Avg Mem Access Time = "

"L1 Hit Time + L1 Miss Rate *  
"(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)"

L2 hit "
time" L2 Miss Rate"

L2 Miss Penalty"

CS61C L32 Caches III (31) Garcia, Spring 2010 © UCB

Example
  Assume

  Hit Time = 1 cycle
  Miss rate = 5%
  Miss penalty = 20 cycles
  Calculate AMAT…

  Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS61C L32 Caches III (32) Garcia, Spring 2010 © UCB

Ways to reduce miss rate
  Larger cache

  limited by cost and technology
  hit time of first level cache < cycle time (bigger

caches are slower)

  More places in the cache to put each block of
memory – associativity
  fully-associative
  any block any line

  N-way set associated
  N places for each block
  direct map: N=1

CS61C L32 Caches III (33) Garcia, Spring 2010 © UCB

Typical Scale
  L1

  size: tens of KB
  hit time: complete in one clock cycle
  miss rates: 1-5%

  L2:
  size: hundreds of KB
  hit time: few clock cycles
  miss rates: 10-20%

  L2 miss rate is fraction of L1 misses that also
miss in L2
  why so high?

CS61C L32 Caches III (34) Garcia, Spring 2010 © UCB

Example: with L2 cache
  Assume

  L1 Hit Time = 1 cycle
  L1 Miss rate = 5%
  L2 Hit Time = 5 cycles
  L2 Miss rate = 15% (% L1 misses that miss)
  L2 Miss Penalty = 200 cycles

  L1 miss penalty = 5 + 0.15 * 200 = 35
  Avg mem access time = 1 + 0.05 x 35

 = 2.75 cycles

CS61C L32 Caches III (35) Garcia, Spring 2010 © UCB

Example: without L2 cache
  Assume

  L1 Hit Time = 1 cycle
  L1 Miss rate = 5%
  L1 Miss Penalty = 200 cycles

  Avg mem access time = 1 + 0.05 x 200
 = 11 cycles

  4x faster with L2 cache! (2.75 vs. 11)

  Cache
  32 KB Instructions and 32 KB

Data L1 caches
  External L2 Cache interface

with integrated controller
and cache tags, supports up
to 1 MByte external L2 cache

  Dual Memory Management
Units (MMU) with Translation
Lookaside Buffers (TLB)

  Pipelining
  Superscalar (3 inst/cycle)
  6 execution units (2 integer

and 1 double precision IEEE
floating point)

An actual CPU – Early PowerPC

CS61C L32 Caches III (37) Garcia, Spring 2010 © UCB

An Actual CPU – Pentium M

32KB I$"

32KB D$"

