UCB CS61C : Machine Structures

Lecture 32 - Caches Il
2010-04-14

MICROSOFT OFFICE 2010 FREE ON CLOUD

In an attempt to stem the tide of corporate

users moving their data to Google Docs,

Microsoft will offer free (ad-supported) versions

of their software that runs on the web. MS gets B
60% profits from Office Suite, it’'s scramble time! = L

technologyreview.com/web/25029/

Review

= Mechanism for transparent movement of data

among levels of a storage hierarchy
= set of address/value bindings

address => index to set of candidates
compare desired address with tag

service hit or miss
- load new%lock and binding on miss

address: index

0000000001

Vali
Fd_’fag_ 0x8-b 0x4-7 0x0-3
A
l o) a

//’ < XX] //"
O 4.
. T b O

CS61C L32 Caches Il (2) Garcia, Spring 2010 © UCB

What to do on a write hit?

= Write-through

= ypdate the word in cache block and corresponding
word in memory

= Write-back

= ypdate word in cache block

= allow memory word to be “stale”

= = add ‘dirty’ bit to each block indicating that
memory needs to be updated when block is
replaced

= = OS flushes cache before I/0. ..
= Performance trade-offs?

y SR 4
QL4 }
\?“ -~

CS61C L32 Caches lll (3) Garcia, Spring 2010 © UCB

Block Size Tradeoff (1/3)

= Benefits of Larger Block Size

= Spatial Locality: if we access a given word, we're
likely to access other nearby words soon

= Very applicable with Stored-Program Concept: if we
execute a given instruction, it’s likely that we'll

execute the next few as well
= Works nicely in sequential array accesses too

i
. CS61C L32 Caches lll (4) Garcia, Spring 2010 © UCB

Block Size Tradeoff (2/3)

= Drawbacks of Larger Block Size

= Larger block size means

= on a miss, takes longer time to load a new block from
next level

o |f block size is too big relative to cache size, then

there are too few blocks
- Result: miss rate goes up

= In general, minimize
Average Memory Access Time (AMAT)

= Hit Time
+ Miss Penalty x Miss Rate

S 4
. = CS61C L32 Caches lll (5) Garcia, Spring 2010 © UCB

Block Size Tradeoff (3/3)

= Hit Time
= time to find and retrieve data from current level
cache

= Miss Penalty
o average time to retrieve data on a current level miss

(includes the possibility of misses on successive
levels of memory hierarchy)

= Hit Rate
= % of requests that are found in current level cache

" Miss Rate
- 1 - Hit Rate

>— -~) €S41C L32 Caches i (6) Garcia, Spring 2010 © UCB

Extreme Example: One Big Block

Valid Bit Tag Cache Data
O | | B3TB2IB1IB 01
= Cache Size = 4 bytes Block Size = 4 bytes
= Only ONE entry (row) in the cache!

= |f item accessed, likely accessed again soon

= But unlikely will be accessed again immediately!

= The next access will likely to be a miss again

= Continually loading data into the cache but
discard data (force out) before use it again

= Nightmare for cache designer: Ping Pong Effect

S 4
> “» CS61C L32 Caches il (7) Garcia, Spring 2010 © UCB

Block Size Tradeoff Conclusions

Miss Miss

Exploits Spatial Localit
Penalty Rate " P Y

Fewer blocks:
compromises
temporal locality

Block Size Block Size

Average Increased Miss Penalty
Access & Miss Rate

Time /

QALA Cseic 132 Coches 1 @) Block Size Garcia, Spring 2010 © UCB

Types of Cache Misses (1/2)

» “Three Cs” Model of Misses

= 15t C: Compulsory Misses
= occur when a program is first started

= cache does not contain any of that program’s data
yet, so misses are bound to occur

= can’t be avoided easily, so won’t focus on these in
this course

/¥ g
> . CS61C L32 Caches Il (9) Garcia, Spring 2010 © UCB

Types of Cache Misses (2/2)

= 2nd C: Conflict Misses

= miss that occurs because two distinct memory
addresses map to the same cache location

= two blocks (which happen to map to the same
location) can keep overwriting each other

= big problem in direct-mapped caches
= how do we lessen the effect of these?

= Dedaling with Conflict Misses

= Solution 1: Make the cache size bigger
« Fails at some point
= Solution 2: Multiple distinct blocks can fit in the same
\, i}/ cache Index?

CS61C L32 Caches lll (10) Garcia, Spring 2010 © UCB

Fully Associative Cache (1/3)
= Memory address fields:

= Tag: same as before
o Offset: same as before
o |ndex: non-existant

= What does this mean?

= no “rows”: any block can go anywhere in the cache

= must compare with all tags in entire cache to see if
data is there

i
> » CS61C L32 Caches Il (1) Garcia, Spring 2010 © UCB

Fully Associative Cache (2/3)

= Fully Associative Cache (e.g., 32 B block)
= compare tags in parallel

4 0
Cache Tag (27 bits long) [Byte Offset|

Cache Tag Valid Cache Data

B i

Garcia, Spring 2010 © UCB

Fully Associative Cache (3/3)

= Benefit of Fully Assoc Cache
= No Conflict Misses (since data can go anywhere)

= Drawbacks of Fully Assoc Cache

= Need hardware comparator for every single entry: if
we have a 64KB of data in cache with 4B entries, we

need 16K comparators: infeasible

S 4
> » CS61C L32 Caches Il (13) Garcia, Spring 2010 © UCB

Final Type of Cache Miss

= 31 C: Capacity Misses
o miss that occurs because the cache has a limited
Size
o miss that would not occur if we increase the size of
the cache

o sketchy definition, so just get the general idea

= This is the primary type of miss for Fully
Associative caches.

/¥ g
> . CS61C L32 Caches Il (14) Garcia, Spring 2010 © UCB

N-Way Set Associative Cache (1/3)
= Memory address fields:

: same as before
- same as before

= |Index: points us to the correct “row” (called a set in
this case)

= So what's the difference?

= each set contains multiple blocks

= once we've found correct set, must compare with all
tags in that set to find our data

i
» CS61C L32 Caches lll (15) Garcia, Spring 2010 © UCB

Associative Cache Example

Memory
Address Memory

= Here’s a simple 2-way
set associative cache.

N-Way Set Associative Cache (2/3)

= Basic ldea

= cache is direct-mapped w/respect to sets
= each set is fully associative with N blocks in it

= Given memory address:
= Find correct set using Index value.

= Compare Tag with all Tag values in the determined
set.

= If a match occurs, hit!, otherwise a miss.

= Finally, use the offset field as usual to find the desired
data within the block.

i
> » CS61C L32 Caches il (17) Garcia, Spring 2010 © UCB

N-Way Set Associative Cache (3/3)

= What’s so great about this?

o even a 2-way set assoc cache avoids a lot of conflict
misses

= hardware cost isn’t that bad: only need N
comparators

= In fact, for a cache with M blocks,
o it's Direct-Mapped if it's 1-way set assoc
o it's if it's M-way set assoc
= 50 these two are just special cases of the more
general set associative design

i
. CS61C L32 Caches Il (18) Garcia, Spring 2010 © UCB

4-Way Set Associative Cache Circuit

Address
3130--+12111098---3210

I | L]
tagy22 2
index

Index V Tag Data V Tag Data V Tag Data

é—te-1 muItipIech

CS61C L32 Caches Il (19) Garcia, Spring 2010 © UCB

Block Replacement Policy

= Direct-Mapped Cache

= index completely specifies position which position a block can goin
on a miss

= N-Way Set Assoc

o index specifies a set, but block can occupy any position within the
set on a miss

= Fully Associative
= block can be written into any position

= Question: if we have the choice, where should we write
an incoming block?

= |f there are any locations with valid bit off (empty), then usually write
the new block into the first one.

o |f all possible locations already have a valid block, we must pick a
: rule by which we determine which block gets
“cached out” on a miss.

CS61C L32 Caches il Garcia, Spring 2010 © UCB

Block Replacement Policy: LRU

= LRU (Least Recently Used)

= |dea: cache out block which has been accessed
read or write) least recently

Pro: => recent past use implies
ikely future use: in fact, this is a very effective policy

= Con: with 2-way set assoc, easy to keep track (one
LRU bit); with 4-way or greater, requires complicated
hardware and much time to keep track of this

S 4
> . CS61C L32 Caches il (21) Garcia, Spring 2010 © UCB

Block Replacement Example

= We have a 2-way set associative cache with
a four word total capacity and one word
blocks. We perform the following word
accesses (ignore bytes for this problem):

0,2,01,4,0,2,3,5,4

= How many hits and how many misses will
there be for the LRU block replacement
policy?

@R CS61C L32 Caches il (22) Garcia, Spring 2010 © UCB

Block Replacement Example: LRU to"°° el
se 0

0: miss, bring into set 0 (loc 0) set 1\
set 0"y
2: miss, bring into set 0 (loc 1) i_O__Z_

set 1

0: hit =t9_0["2

- set 1‘

seto‘ 0"”2
set[q[ru

1: miss, bring into set 1 (loc 0)

|
4: miss, bring into set 0 (loc 1, replace 2) *°* oo | 4
set 1‘ 1 "“‘

~ set0] Iru4

S 4
> . CS61C L32 Caches lll (23) Garcia, Spring 2010 © UCB

Big Idea
= How to choose between associativity, block
size, replacement & write policy?

= Design against a performance model
o Minimize:

o jnfluenced by technology & program behavior

= Create the illusion of a memory that is large,
cheap, and fast - on average

= How can we improve miss penalty?

_// :) __/”..

*“ ~~ CS6IC L32 Caches Il (24) Garcia, Spring 2010 © UCB

Improving Miss Penalty

= When caches first became popular, Miss
Penalty ~ 10 processor clock cycles

= Today 2400 MHz Processor (0.4 ns per clock
cycle) and 80 ns to go to DRAM
=> 200 processor clock cycles!

MEM

) $2::

Solution: another cache between memory and the
) jprocessor cache:

= CS61C L32 Caches lll (25) Garcia, Spring 2010 © UCB

Peer Instruction

1. A 2-way set-associative cache can be
outperformed by a direct-mapped cache.

2. Larger block size = lower miss rate

S 4
. CS61C L32 Caches lll (26) Garcia, Spring 2010 © UCB

Peer Instruction Answer

om, 2m 4m, 2m
om, 2m 4m

. Larger block size = lower miss rate, true until a
certain point, and then the ping-pong effect
takes over

A 2-way set-associative cache can be
outperformed by a direct-mapped cache.

Larger block size = lower miss rate

: - CS61C L32 Caches lil (27) Garcia, Spring 2010 © UCB

And in Conclusion...

= We've discussed memory caching in detail. Caching in general
shows up over and over in computer systems
o Filesystem cache, Web page cache, Game databases / tablebases,
Software memoization, Others?

= Big idea: if something is expensive but we want to do it repeatedly,
do it once and cache the result.

= Cache design choices:

Size of cache: speed v. capacity

Block size (i.e., cache aspect ratio)

Write Policy (Write through v. write back

Associativity choice of N (direct-mapped v. set v. fully associative)
Block replacement policy

2nd level cache?

3rd level cache?

= Use performance model to pick between choices, depending on
), programs, technology, budget, ...

CS61C L32 Caches lli (28) Garcia, Spring 2010 © UCB

Bonus slides

= These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

= The slides will appear in the order they would
have in the normal presentation

] B

J

v

i
> . CS61C L32 Caches lll (29) Garcia, Spring 2010 © UCB

Analyzing Multi-level cache hierarchy

o O

L1 hit | L2hit

time time | [2 Miss Rate

L2 Miss Penaliy
L1 Miss Rate

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *

L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(2,7 (L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

CS61C L32 Caches lil (30 Garcia, Spring 2010 © UCB

Example

= Assume
o Hit Time =1 cycle
= Miss rate = 5%
= Miss penalty = 20 cycles
= Calculate AMAT...

= Avg mem access time
=1+0.05x20
=1+ 1cycles
= 2 cycles

i
> . CS61C L32 Caches il (31) Garcia, Spring 2010 © UCB

Ways to reduce miss rate

= Larger cache
o limited by cost and technology

= hit time of first level cache < cycle time (bigger
caches are slower)

= More places in the cache to put each block of

memory - associativity
o fully-associative

= any block any line
= N-way set associated

- N places for each block
= direct map: N=1

S 4
> . CS61C L32 Caches lll (32) Garcia, Spring 2010 © UCB

Typical Scale

= L]
o size: tens of KB
o hit time: complete in one clock cycle
o miss rates: 1-5%

n L2:

o Size: hundreds of KB
= hit time: few clock cycles
o miss rates: 10-20%

= L2 miss rate is fraction of L1 misses that also
miss in L2

- why so high?

S 4
> . CS61C L32 Caches Il (33) Garcia, Spring 2010 © UCB

Example: with L2 cache

= Assume

|1 Hit Time =1 cycle

|1 Miss rate = 5%

|2 Hit Time = 5 cycles

|2 Miss rate = 15% (% L1 misses that miss)

|2 Miss Penalty =
= L1 miss penalty =5 + 0.15 * 200 = 35
= Avg mem access time =1+ 0.05 x 35

S 4
> . CS61C L32 Caches lll (34) Garcia, Spring 2010 © UCB

Example: without L2 cache

= Assume

|1 Hit Time =1 cycle

L1 Miss rate = 5%

|1 Miss Penalty = 200 cycles

= Avg mem access time =1+ 0.05 x 200

= 11 cycles

faster with L2 cache! (vs. 1)

/¥ g
> . CS6IC L32 Caches Il (35) Garcia, Spring 2010 © UCB

An actual CPU - Early PowerPC

= Cache

= 32 KB Instructions and 32 KB
Data L1 caches

External L2 Cache interface
with integrated controller
and cache tags, supports up
to 1 MByte external L2 cache

Dual Memory Management
Units (MMU) with Translation
Lookaside Buffers (TLB)

= Pipelining
o Superscalar (3 inst/cycle)

o 6 execution units (2 integer
and 1 double precision IEEE
floating point)

SRR T IITITIEARY ANARAMMRRARAMI M MM AT TII lﬂluum‘

Inte ger E
| 3

..-—?.‘.- —_— U l_t»S

BRTRSTLNRANE TR SR

Sequenger =

: Ioatln
Pomt .

I PTITR LS00

PROLATTALEYTE i

An Actual CPU - Pentium M

intel® Pentium®
M Processor

New Micro Architecture

77 Million Transistors
, L T FEre T T R Streaming SIMD
Micro-Ops Fusion — P v oy ChE - Extensions |I
P - s 1 1Al -
fuses operations et 5 | o v o 0 |7 compatible with
together to enable it) IR B ‘ Pentium® 4
faster execution of = Vi ;omaing g ; Processor
instructions at lower e | B - optimized software
power : * = e : :
it TF . : Dedicated Stack
Advanced Branch) s— Sy § Management —
Prediction — fewer re-dos : Ll . | faster instruction
for increased performance | at lower power

32KB I$- g g | | B e
32KB D$— 1MB Power

Optimized L2 Cache
— enables higher CPU
performance

nhanced Intel®
522251 S &292)
Technology - Multiple
voltages & frequency
operating points

400 MHz Power
Optimized System Bus
- faster system bus to
enhance performance at
lower power levels

I

_WIPIHXI‘."‘ BERTIZIV ISR 70 ISR e

|

CS61C L32 Caches lli (37) Garcia, Spring 2010 © UCB

