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  Mechanism for transparent movement of data 
among levels of a storage hierarchy 
  set of address/value bindings 
  address ⇒ index to set of candidates 
  compare desired address with tag 
  service hit or miss 
  load new block and binding on miss 

Valid	


Tag	

 0xc-f	

 0x8-b	

 0x4-7	

 0x0-3	



0	


1	


2	


3	


...	



1" 0" d" c" b" a"

000000000000000000 0000000001 1100"
address:            tag                                index                      offset   

Review 
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What to do on a write hit? 
  Write-through 

  update the word in cache block and corresponding 
word in memory 

  Write-back 
  update word in cache block 
  allow memory word to be “stale” 
  ⇒ add ‘dirty’ bit to each block indicating that 

memory needs to be updated when block is 
replaced 

  ⇒ OS flushes cache before I/O… 

  Performance trade-offs? 
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Block Size Tradeoff (1/3) 
  Benefits of Larger Block Size 

  Spatial Locality: if we access a given word, we’re 
likely to access other nearby words soon 

  Very applicable with Stored-Program Concept: if we 
execute a given instruction, it’s likely that we’ll 
execute the next few as well 

  Works nicely in sequential array accesses too 
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Block Size Tradeoff (2/3) 
  Drawbacks of Larger Block Size 

  Larger block size means larger miss penalty 
  on a miss, takes longer time to load a new block from 

next level 

  If block size is too big relative to cache size, then 
there are too few blocks 
  Result: miss rate goes up 

  In general, minimize  
Average Memory Access Time (AMAT) 

 = Hit Time  
  + Miss Penalty x Miss Rate 
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Block Size Tradeoff (3/3) 
  Hit Time 

  time to find and retrieve data from current level 
cache 

  Miss Penalty 
  average time to retrieve data on a current level miss 

(includes the possibility of misses on successive 
levels of memory hierarchy) 

  Hit Rate 
  % of requests that are found in current level cache 

  Miss Rate 
  1 - Hit Rate 



CS61C L32 Caches III (7) Garcia, Spring 2010 © UCB 

Extreme Example: One Big Block 

  Cache Size = 4 bytes  Block Size = 4 bytes 
  Only ONE entry (row) in the cache! 

  If item accessed, likely accessed again soon 
  But unlikely will be accessed again immediately! 

  The next access will likely to be a miss again 
  Continually loading data into the cache but 

discard data (force out) before use it again 
  Nightmare for cache designer: Ping Pong Effect 

 Cache Data"Valid Bit"
B 0	

B 1	

B 3	



Tag	


B 2	
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Block Size Tradeoff Conclusions 
Miss 
Penalty 

Block Size	



Increased Miss Penalty 
& Miss Rate 

Average 
Access 

Time 

Block Size	



Exploits Spatial Locality 

Fewer blocks:  
compromises 
temporal locality 

Miss 
Rate 

Block Size	
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Types of Cache Misses (1/2) 
  “Three Cs” Model of Misses 
  1st C: Compulsory Misses 

  occur when a program is first started 
  cache does not contain any of that program’s data 

yet, so misses are bound to occur 
  can’t be avoided easily, so won’t focus on these in 

this course 
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Types of Cache Misses (2/2) 
  2nd C: Conflict Misses 

  miss that occurs because two distinct memory 
addresses map to the same cache location 

  two blocks (which happen to map to the same 
location) can keep overwriting each other 

  big problem in direct-mapped caches 
  how do we lessen the effect of these? 

  Dealing with Conflict Misses 
  Solution 1: Make the cache size bigger 
  Fails at some point  

  Solution 2: Multiple distinct blocks can fit in the same 
cache Index? 
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Fully Associative Cache (1/3) 
  Memory address fields: 

  Tag: same as before 
  Offset: same as before 
  Index: non-existant 

  What does this mean? 
  no “rows”: any block can go anywhere in the cache 
  must compare with all tags in entire cache to see if 

data is there 
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Fully Associative Cache (2/3) 
  Fully Associative Cache (e.g., 32 B block) 

  compare tags in parallel 

Byte Offset	



:	



 Cache Data	
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Cache Tag (27 bits long)	
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Fully Associative Cache (3/3) 
  Benefit of Fully Assoc Cache 

  No Conflict Misses (since data can go anywhere) 

  Drawbacks of Fully Assoc Cache 
  Need hardware comparator for every single entry: if 

we have a 64KB of data in cache with 4B entries, we 
need 16K comparators: infeasible 
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Final Type of Cache Miss 
  3rd C: Capacity Misses 

  miss that occurs because the cache has a limited 
size 

  miss that would not occur if we increase the size of 
the cache 

  sketchy definition, so just get the general idea 

  This is the primary type of miss for Fully 
Associative caches. 



CS61C L32 Caches III (15) Garcia, Spring 2010 © UCB 

N-Way Set Associative Cache (1/3) 
  Memory address fields: 

  Tag: same as before 
  Offset: same as before 
  Index: points us to the correct “row” (called a set in 

this case) 

  So what’s the difference? 
  each set contains multiple blocks 
  once we’ve found correct set, must compare with all 

tags in that set to find our data 
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Associative Cache Example 

  Here’s a simple 2-way 
set associative cache. 

Memory	
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Address	
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N-Way Set Associative Cache (2/3) 
  Basic Idea 

  cache is direct-mapped w/respect to sets 
  each set is fully associative with N blocks in it 

  Given memory address: 
  Find correct set using Index value. 
  Compare Tag with all Tag values in the determined 

set. 
  If a match occurs, hit!, otherwise a miss. 
  Finally, use the offset field as usual to find the desired 

data within the block. 
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N-Way Set Associative Cache (3/3) 
  What’s so great about this? 

  even a 2-way set assoc cache avoids a lot of conflict 
misses 

  hardware cost isn’t that bad: only need N 
comparators 

  In fact, for a cache with M blocks, 
  it’s Direct-Mapped if it’s 1-way set assoc 
  it’s Fully Assoc if it’s M-way set assoc 
  so these two are just special cases of the more 

general set associative design 
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4-Way Set Associative Cache Circuit 

tag"
index"
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Block Replacement Policy 
  Direct-Mapped Cache 

  index completely specifies position which position a block can go in 
on a miss 

  N-Way Set Assoc 
  index specifies a set, but block can occupy any position within the 

set on a miss 

  Fully Associative 
  block can be written into any position 

  Question: if we have the choice, where should we write 
an incoming block? 
  If there are any locations with valid bit off (empty), then usually write 

the new block into the first one. 
  If all possible locations already have a valid block, we must pick a 

replacement policy: rule by which we determine which block gets 
“cached out” on a miss. 
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Block Replacement Policy: LRU 
  LRU (Least Recently Used) 

  Idea: cache out block which has been accessed 
(read or write) least recently 

  Pro: temporal locality ⇒ recent past use implies 
likely future use: in fact, this is a very effective policy 

  Con: with 2-way set assoc, easy to keep track (one 
LRU bit); with 4-way or greater, requires complicated 
hardware and much time to keep track of this 
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Block Replacement Example 
  We have a 2-way set associative cache with 

a four word total capacity and one word 
blocks.  We perform the following word 
accesses (ignore bytes for this problem): 

  0, 2, 0, 1, 4, 0, 2, 3, 5, 4 
  How many hits and how many misses will 

there be for the LRU block replacement 
policy? 
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Block Replacement Example: LRU 

Addresses 0, 2, 0, 1, 4, 0, ... 

0" lru"

2"

1" lru"

loc 0" loc 1"
set 0"

set 1"

0" 2"lru"set 0"
set 1"

 0: miss, bring into set 0 (loc 0)"

 2: miss, bring into set 0 (loc 1)"

 0: hit"

 1: miss, bring into set 1 (loc 0)"

 4: miss, bring into set 0 (loc 1, replace 2)"

 0: hit"

0"set 0"
set 1"

lru"lru"

0" 2"set 0"
set 1"

lru" lru"

set 0"
set 1"

0"
1" lru"

lru"2"4"lru"

set 0"
set 1"

0" 4"
1" lru"

lru" lru"
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Big Idea 
  How to choose between associativity, block 

size, replacement & write policy? 
  Design against a performance model 

  Minimize: Average Memory Access Time  
     = Hit Time  

      +  Miss Penalty x Miss Rate 
  influenced by technology & program behavior 

  Create the illusion of a memory that is large, 
cheap, and fast - on average 

  How can we improve miss penalty? 
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Improving Miss Penalty 
  When caches first became popular, Miss 

Penalty ~ 10 processor clock cycles 
  Today 2400 MHz Processor (0.4 ns per clock 

cycle) and 80 ns to go to DRAM  
⇒ 200 processor clock cycles! 

Proc" $2"

D
R

AM
"

$"

MEM"

Solution: another cache between memory and the 
processor cache: Second Level (L2) Cache 
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Peer Instruction 

1.  A 2-way set-associative cache can be 
outperformed by a direct-mapped cache. 

2.  Larger block size ⇒ lower miss rate 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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Peer Instruction Answer 
1.  Sure, consider the caches from the previous 

slides with the following workload: 0, 2, 0, 4, 2  
2-way: 0m, 2m, 0h, 4m, 2m;  
DM: 0m, 2m, 0h, 4m, 2h 

2.  Larger block size ⇒ lower miss rate, true until a 
certain point, and then the ping-pong effect 
takes over 

1.  A 2-way set-associative cache can be 
outperformed by a direct-mapped cache. 

2.  Larger block size ⇒ lower miss rate 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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And in Conclusion… 
  We’ve discussed memory caching in detail.  Caching in general 

shows up over and over in computer systems 
  Filesystem cache, Web page cache, Game databases / tablebases, 

Software memoization, Others? 

  Big idea: if something is expensive but we want to do it repeatedly, 
do it once and cache the result.  

  Cache design choices: 
  Size of cache: speed v. capacity 
  Block size (i.e., cache aspect ratio) 
  Write Policy (Write through v. write back 
  Associativity choice of N (direct-mapped v. set v. fully associative) 
  Block replacement policy 
  2nd level cache? 
  3rd level cache? 

  Use performance model to pick between choices, depending on 
programs, technology, budget, ... 
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Bonus slides 
  These are extra slides that used to be 

included in lecture notes, but have been 
moved to this, the “bonus” area to serve as a 
supplement. 

  The slides will appear in the order they would 
have in the normal presentation 
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Analyzing Multi-level cache hierarchy 

Proc" $2"

D
R

AM
"

$"

L1 hit "
time"

L1 Miss Rate"
L1 Miss Penalty"Avg Mem Access Time = "

"L1 Hit Time + L1 Miss Rate * L1 Miss Penalty"
L1 Miss Penalty = "

"L2 Hit Time + L2 Miss Rate * L2 Miss Penalty"
Avg Mem Access Time = "

"L1 Hit Time + L1 Miss Rate *  
"(L2 Hit Time +  L2 Miss Rate * L2 Miss Penalty)"

L2 hit "
time" L2 Miss Rate"

L2 Miss Penalty"
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Example 
  Assume  

  Hit Time = 1 cycle 
  Miss rate = 5% 
  Miss penalty = 20 cycles 
  Calculate AMAT… 

  Avg mem access time  
= 1 + 0.05 x 20 
= 1 + 1 cycles 
= 2 cycles 



CS61C L32 Caches III (32) Garcia, Spring 2010 © UCB 

Ways to reduce miss rate 
  Larger cache 

  limited by cost and technology 
  hit time of first level cache < cycle time (bigger 

caches are slower) 

  More places in the cache to put each block of 
memory – associativity 
  fully-associative 
  any block any line 

  N-way set associated 
  N places for each block 
  direct map: N=1  
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Typical Scale 
  L1  

  size: tens of KB 
  hit time: complete in one clock cycle 
  miss rates: 1-5% 

  L2: 
  size: hundreds of KB 
  hit time: few clock cycles 
  miss rates: 10-20% 

  L2 miss rate is fraction of L1 misses that also 
miss in L2 
  why so high? 
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Example: with L2 cache 
  Assume  

  L1 Hit Time = 1 cycle 
  L1 Miss rate = 5% 
  L2 Hit Time = 5 cycles 
  L2 Miss rate = 15%  (% L1 misses that miss) 
  L2 Miss Penalty = 200 cycles 

  L1 miss penalty = 5 + 0.15 * 200 = 35 
  Avg mem access time = 1 + 0.05 x 35  

                                     = 2.75 cycles 



CS61C L32 Caches III (35) Garcia, Spring 2010 © UCB 

Example: without L2 cache 
  Assume  

  L1 Hit Time = 1 cycle 
  L1 Miss rate = 5% 
  L1 Miss Penalty = 200 cycles 

  Avg mem access time = 1 + 0.05 x 200 
                                     = 11 cycles 

  4x faster with L2 cache! (2.75 vs. 11) 



  Cache 
  32 KB Instructions and 32 KB 

Data L1 caches 
  External L2 Cache interface 

with integrated controller 
and cache tags, supports up 
to 1 MByte external L2 cache 

  Dual Memory Management 
Units (MMU) with Translation 
Lookaside Buffers (TLB) 

  Pipelining 
  Superscalar (3 inst/cycle) 
  6 execution units (2 integer 

and 1 double precision IEEE 
floating point) 

An actual CPU – Early PowerPC 
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An Actual CPU – Pentium M 

32KB I$"

32KB D$"


