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  Mechanism for transparent movement of data 
among levels of a storage hierarchy 
  set of address/value bindings 
  address ⇒ index to set of candidates 
  compare desired address with tag 
  service hit or miss 
  load new block and binding on miss 

Valid	

Tag	
 0xc-f	
 0x8-b	
 0x4-7	
 0x0-3	


0	

1	

2	

3	

...	


1" 0" d" c" b" a"

000000000000000000 0000000001 1100"
address:            tag                                index                      offset   

Review 
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What to do on a write hit? 
  Write-through 

  update the word in cache block and corresponding 
word in memory 

  Write-back 
  update word in cache block 
  allow memory word to be “stale” 
  ⇒ add ‘dirty’ bit to each block indicating that 

memory needs to be updated when block is 
replaced 

  ⇒ OS flushes cache before I/O… 

  Performance trade-offs? 
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Block Size Tradeoff (1/3) 
  Benefits of Larger Block Size 

  Spatial Locality: if we access a given word, we’re 
likely to access other nearby words soon 

  Very applicable with Stored-Program Concept: if we 
execute a given instruction, it’s likely that we’ll 
execute the next few as well 

  Works nicely in sequential array accesses too 
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Block Size Tradeoff (2/3) 
  Drawbacks of Larger Block Size 

  Larger block size means larger miss penalty 
  on a miss, takes longer time to load a new block from 

next level 

  If block size is too big relative to cache size, then 
there are too few blocks 
  Result: miss rate goes up 

  In general, minimize  
Average Memory Access Time (AMAT) 

 = Hit Time  
  + Miss Penalty x Miss Rate 
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Block Size Tradeoff (3/3) 
  Hit Time 

  time to find and retrieve data from current level 
cache 

  Miss Penalty 
  average time to retrieve data on a current level miss 

(includes the possibility of misses on successive 
levels of memory hierarchy) 

  Hit Rate 
  % of requests that are found in current level cache 

  Miss Rate 
  1 - Hit Rate 
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Extreme Example: One Big Block 

  Cache Size = 4 bytes  Block Size = 4 bytes 
  Only ONE entry (row) in the cache! 

  If item accessed, likely accessed again soon 
  But unlikely will be accessed again immediately! 

  The next access will likely to be a miss again 
  Continually loading data into the cache but 

discard data (force out) before use it again 
  Nightmare for cache designer: Ping Pong Effect 

 Cache Data"Valid Bit"
B 0	
B 1	
B 3	


Tag	

B 2	
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Block Size Tradeoff Conclusions 
Miss 
Penalty 

Block Size	


Increased Miss Penalty 
& Miss Rate 

Average 
Access 

Time 

Block Size	


Exploits Spatial Locality 

Fewer blocks:  
compromises 
temporal locality 

Miss 
Rate 

Block Size	
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Types of Cache Misses (1/2) 
  “Three Cs” Model of Misses 
  1st C: Compulsory Misses 

  occur when a program is first started 
  cache does not contain any of that program’s data 

yet, so misses are bound to occur 
  can’t be avoided easily, so won’t focus on these in 

this course 
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Types of Cache Misses (2/2) 
  2nd C: Conflict Misses 

  miss that occurs because two distinct memory 
addresses map to the same cache location 

  two blocks (which happen to map to the same 
location) can keep overwriting each other 

  big problem in direct-mapped caches 
  how do we lessen the effect of these? 

  Dealing with Conflict Misses 
  Solution 1: Make the cache size bigger 
  Fails at some point  

  Solution 2: Multiple distinct blocks can fit in the same 
cache Index? 
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Fully Associative Cache (1/3) 
  Memory address fields: 

  Tag: same as before 
  Offset: same as before 
  Index: non-existant 

  What does this mean? 
  no “rows”: any block can go anywhere in the cache 
  must compare with all tags in entire cache to see if 

data is there 
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Fully Associative Cache (2/3) 
  Fully Associative Cache (e.g., 32 B block) 

  compare tags in parallel 

Byte Offset	


:	


 Cache Data	

B  0	


0	
4	
31	


:	


Cache Tag (27 bits long)	


Valid	


:	


B 1	
B 31	
 :	


 Cache Tag	

=	


=	

=	


=	


=	

:	
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Fully Associative Cache (3/3) 
  Benefit of Fully Assoc Cache 

  No Conflict Misses (since data can go anywhere) 

  Drawbacks of Fully Assoc Cache 
  Need hardware comparator for every single entry: if 

we have a 64KB of data in cache with 4B entries, we 
need 16K comparators: infeasible 
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Final Type of Cache Miss 
  3rd C: Capacity Misses 

  miss that occurs because the cache has a limited 
size 

  miss that would not occur if we increase the size of 
the cache 

  sketchy definition, so just get the general idea 

  This is the primary type of miss for Fully 
Associative caches. 
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N-Way Set Associative Cache (1/3) 
  Memory address fields: 

  Tag: same as before 
  Offset: same as before 
  Index: points us to the correct “row” (called a set in 

this case) 

  So what’s the difference? 
  each set contains multiple blocks 
  once we’ve found correct set, must compare with all 

tags in that set to find our data 
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Associative Cache Example 

  Here’s a simple 2-way 
set associative cache. 

Memory	

Memory ���
Address	


0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

A	

B	

C	

D	

E	

F	


Cache 	

Index	


0	

0	

1	

1	
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N-Way Set Associative Cache (2/3) 
  Basic Idea 

  cache is direct-mapped w/respect to sets 
  each set is fully associative with N blocks in it 

  Given memory address: 
  Find correct set using Index value. 
  Compare Tag with all Tag values in the determined 

set. 
  If a match occurs, hit!, otherwise a miss. 
  Finally, use the offset field as usual to find the desired 

data within the block. 
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N-Way Set Associative Cache (3/3) 
  What’s so great about this? 

  even a 2-way set assoc cache avoids a lot of conflict 
misses 

  hardware cost isn’t that bad: only need N 
comparators 

  In fact, for a cache with M blocks, 
  it’s Direct-Mapped if it’s 1-way set assoc 
  it’s Fully Assoc if it’s M-way set assoc 
  so these two are just special cases of the more 

general set associative design 
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4-Way Set Associative Cache Circuit 

tag"
index"
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Block Replacement Policy 
  Direct-Mapped Cache 

  index completely specifies position which position a block can go in 
on a miss 

  N-Way Set Assoc 
  index specifies a set, but block can occupy any position within the 

set on a miss 

  Fully Associative 
  block can be written into any position 

  Question: if we have the choice, where should we write 
an incoming block? 
  If there are any locations with valid bit off (empty), then usually write 

the new block into the first one. 
  If all possible locations already have a valid block, we must pick a 

replacement policy: rule by which we determine which block gets 
“cached out” on a miss. 
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Block Replacement Policy: LRU 
  LRU (Least Recently Used) 

  Idea: cache out block which has been accessed 
(read or write) least recently 

  Pro: temporal locality ⇒ recent past use implies 
likely future use: in fact, this is a very effective policy 

  Con: with 2-way set assoc, easy to keep track (one 
LRU bit); with 4-way or greater, requires complicated 
hardware and much time to keep track of this 
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Block Replacement Example 
  We have a 2-way set associative cache with 

a four word total capacity and one word 
blocks.  We perform the following word 
accesses (ignore bytes for this problem): 

  0, 2, 0, 1, 4, 0, 2, 3, 5, 4 
  How many hits and how many misses will 

there be for the LRU block replacement 
policy? 
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Block Replacement Example: LRU 

Addresses 0, 2, 0, 1, 4, 0, ... 

0" lru"

2"

1" lru"

loc 0" loc 1"
set 0"

set 1"

0" 2"lru"set 0"
set 1"

 0: miss, bring into set 0 (loc 0)"

 2: miss, bring into set 0 (loc 1)"

 0: hit"

 1: miss, bring into set 1 (loc 0)"

 4: miss, bring into set 0 (loc 1, replace 2)"

 0: hit"

0"set 0"
set 1"

lru"lru"

0" 2"set 0"
set 1"

lru" lru"

set 0"
set 1"

0"
1" lru"

lru"2"4"lru"

set 0"
set 1"

0" 4"
1" lru"

lru" lru"
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Big Idea 
  How to choose between associativity, block 

size, replacement & write policy? 
  Design against a performance model 

  Minimize: Average Memory Access Time  
     = Hit Time  

      +  Miss Penalty x Miss Rate 
  influenced by technology & program behavior 

  Create the illusion of a memory that is large, 
cheap, and fast - on average 

  How can we improve miss penalty? 
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Improving Miss Penalty 
  When caches first became popular, Miss 

Penalty ~ 10 processor clock cycles 
  Today 2400 MHz Processor (0.4 ns per clock 

cycle) and 80 ns to go to DRAM  
⇒ 200 processor clock cycles! 

Proc" $2"

D
R

AM
"

$"

MEM"

Solution: another cache between memory and the 
processor cache: Second Level (L2) Cache 
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Peer Instruction 

1.  A 2-way set-associative cache can be 
outperformed by a direct-mapped cache. 

2.  Larger block size ⇒ lower miss rate 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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Peer Instruction Answer 
1.  Sure, consider the caches from the previous 

slides with the following workload: 0, 2, 0, 4, 2  
2-way: 0m, 2m, 0h, 4m, 2m;  
DM: 0m, 2m, 0h, 4m, 2h 

2.  Larger block size ⇒ lower miss rate, true until a 
certain point, and then the ping-pong effect 
takes over 

1.  A 2-way set-associative cache can be 
outperformed by a direct-mapped cache. 

2.  Larger block size ⇒ lower miss rate 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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And in Conclusion… 
  We’ve discussed memory caching in detail.  Caching in general 

shows up over and over in computer systems 
  Filesystem cache, Web page cache, Game databases / tablebases, 

Software memoization, Others? 

  Big idea: if something is expensive but we want to do it repeatedly, 
do it once and cache the result.  

  Cache design choices: 
  Size of cache: speed v. capacity 
  Block size (i.e., cache aspect ratio) 
  Write Policy (Write through v. write back 
  Associativity choice of N (direct-mapped v. set v. fully associative) 
  Block replacement policy 
  2nd level cache? 
  3rd level cache? 

  Use performance model to pick between choices, depending on 
programs, technology, budget, ... 
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Bonus slides 
  These are extra slides that used to be 

included in lecture notes, but have been 
moved to this, the “bonus” area to serve as a 
supplement. 

  The slides will appear in the order they would 
have in the normal presentation 
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Analyzing Multi-level cache hierarchy 

Proc" $2"

D
R

AM
"

$"

L1 hit "
time"

L1 Miss Rate"
L1 Miss Penalty"Avg Mem Access Time = "

"L1 Hit Time + L1 Miss Rate * L1 Miss Penalty"
L1 Miss Penalty = "

"L2 Hit Time + L2 Miss Rate * L2 Miss Penalty"
Avg Mem Access Time = "

"L1 Hit Time + L1 Miss Rate *  
"(L2 Hit Time +  L2 Miss Rate * L2 Miss Penalty)"

L2 hit "
time" L2 Miss Rate"

L2 Miss Penalty"
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Example 
  Assume  

  Hit Time = 1 cycle 
  Miss rate = 5% 
  Miss penalty = 20 cycles 
  Calculate AMAT… 

  Avg mem access time  
= 1 + 0.05 x 20 
= 1 + 1 cycles 
= 2 cycles 
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Ways to reduce miss rate 
  Larger cache 

  limited by cost and technology 
  hit time of first level cache < cycle time (bigger 

caches are slower) 

  More places in the cache to put each block of 
memory – associativity 
  fully-associative 
  any block any line 

  N-way set associated 
  N places for each block 
  direct map: N=1  
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Typical Scale 
  L1  

  size: tens of KB 
  hit time: complete in one clock cycle 
  miss rates: 1-5% 

  L2: 
  size: hundreds of KB 
  hit time: few clock cycles 
  miss rates: 10-20% 

  L2 miss rate is fraction of L1 misses that also 
miss in L2 
  why so high? 
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Example: with L2 cache 
  Assume  

  L1 Hit Time = 1 cycle 
  L1 Miss rate = 5% 
  L2 Hit Time = 5 cycles 
  L2 Miss rate = 15%  (% L1 misses that miss) 
  L2 Miss Penalty = 200 cycles 

  L1 miss penalty = 5 + 0.15 * 200 = 35 
  Avg mem access time = 1 + 0.05 x 35  

                                     = 2.75 cycles 
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Example: without L2 cache 
  Assume  

  L1 Hit Time = 1 cycle 
  L1 Miss rate = 5% 
  L1 Miss Penalty = 200 cycles 

  Avg mem access time = 1 + 0.05 x 200 
                                     = 11 cycles 

  4x faster with L2 cache! (2.75 vs. 11) 



  Cache 
  32 KB Instructions and 32 KB 

Data L1 caches 
  External L2 Cache interface 

with integrated controller 
and cache tags, supports up 
to 1 MByte external L2 cache 

  Dual Memory Management 
Units (MMU) with Translation 
Lookaside Buffers (TLB) 

  Pipelining 
  Superscalar (3 inst/cycle) 
  6 execution units (2 integer 

and 1 double precision IEEE 
floating point) 

An actual CPU – Early PowerPC 
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An Actual CPU – Pentium M 

32KB I$"

32KB D$"


