
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 32 – Caches III
 2010-04-14

In an attempt to stem the tide of corporate
users moving their data to Google Docs,
Microsoft will offer free (ad-supported) versions
of their software that runs on the web. MS gets
60% profits from Office Suite, it’s scramble time!

Lecturer SOE
Dan Garcia

technologyreview.com/web/25029/

CS61C L32 Caches III (2) Garcia, Spring 2010 © UCB

  Mechanism for transparent movement of data
among levels of a storage hierarchy
  set of address/value bindings
  address ⇒ index to set of candidates
  compare desired address with tag
  service hit or miss
  load new block and binding on miss

Valid	

Tag	

 0xc-f	

 0x8-b	

 0x4-7	

 0x0-3	

0	

1	

2	

3	

...	

1" 0" d" c" b" a"

000000000000000000 0000000001 1100"
address: tag index offset

Review

CS61C L32 Caches III (3) Garcia, Spring 2010 © UCB

What to do on a write hit?
  Write-through

  update the word in cache block and corresponding
word in memory

  Write-back
  update word in cache block
  allow memory word to be “stale”
  ⇒ add ‘dirty’ bit to each block indicating that

memory needs to be updated when block is
replaced

  ⇒ OS flushes cache before I/O…

  Performance trade-offs?

CS61C L32 Caches III (4) Garcia, Spring 2010 © UCB

Block Size Tradeoff (1/3)
  Benefits of Larger Block Size

  Spatial Locality: if we access a given word, we’re
likely to access other nearby words soon

  Very applicable with Stored-Program Concept: if we
execute a given instruction, it’s likely that we’ll
execute the next few as well

  Works nicely in sequential array accesses too

CS61C L32 Caches III (5) Garcia, Spring 2010 © UCB

Block Size Tradeoff (2/3)
  Drawbacks of Larger Block Size

  Larger block size means larger miss penalty
  on a miss, takes longer time to load a new block from

next level

  If block size is too big relative to cache size, then
there are too few blocks
  Result: miss rate goes up

  In general, minimize
Average Memory Access Time (AMAT)

 = Hit Time
 + Miss Penalty x Miss Rate

CS61C L32 Caches III (6) Garcia, Spring 2010 © UCB

Block Size Tradeoff (3/3)
  Hit Time

  time to find and retrieve data from current level
cache

  Miss Penalty
  average time to retrieve data on a current level miss

(includes the possibility of misses on successive
levels of memory hierarchy)

  Hit Rate
  % of requests that are found in current level cache

  Miss Rate
  1 - Hit Rate

CS61C L32 Caches III (7) Garcia, Spring 2010 © UCB

Extreme Example: One Big Block

  Cache Size = 4 bytes Block Size = 4 bytes
  Only ONE entry (row) in the cache!

  If item accessed, likely accessed again soon
  But unlikely will be accessed again immediately!

  The next access will likely to be a miss again
  Continually loading data into the cache but

discard data (force out) before use it again
  Nightmare for cache designer: Ping Pong Effect

 Cache Data"Valid Bit"
B 0	

B 1	

B 3	

Tag	

B 2	

CS61C L32 Caches III (8) Garcia, Spring 2010 © UCB

Block Size Tradeoff Conclusions
Miss
Penalty

Block Size	

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size	

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size	

CS61C L32 Caches III (9) Garcia, Spring 2010 © UCB

Types of Cache Misses (1/2)
  “Three Cs” Model of Misses
  1st C: Compulsory Misses

  occur when a program is first started
  cache does not contain any of that program’s data

yet, so misses are bound to occur
  can’t be avoided easily, so won’t focus on these in

this course

CS61C L32 Caches III (10) Garcia, Spring 2010 © UCB

Types of Cache Misses (2/2)
  2nd C: Conflict Misses

  miss that occurs because two distinct memory
addresses map to the same cache location

  two blocks (which happen to map to the same
location) can keep overwriting each other

  big problem in direct-mapped caches
  how do we lessen the effect of these?

  Dealing with Conflict Misses
  Solution 1: Make the cache size bigger
  Fails at some point

  Solution 2: Multiple distinct blocks can fit in the same
cache Index?

CS61C L32 Caches III (11) Garcia, Spring 2010 © UCB

Fully Associative Cache (1/3)
  Memory address fields:

  Tag: same as before
  Offset: same as before
  Index: non-existant

  What does this mean?
  no “rows”: any block can go anywhere in the cache
  must compare with all tags in entire cache to see if

data is there

CS61C L32 Caches III (12) Garcia, Spring 2010 © UCB

Fully Associative Cache (2/3)
  Fully Associative Cache (e.g., 32 B block)

  compare tags in parallel

Byte Offset	

:	

 Cache Data	

B 0	

0	

4	

31	

:	

Cache Tag (27 bits long)	

Valid	

:	

B 1	

B 31	

 :	

 Cache Tag	

=	

=	

=	

=	

=	

:	

CS61C L32 Caches III (13) Garcia, Spring 2010 © UCB

Fully Associative Cache (3/3)
  Benefit of Fully Assoc Cache

  No Conflict Misses (since data can go anywhere)

  Drawbacks of Fully Assoc Cache
  Need hardware comparator for every single entry: if

we have a 64KB of data in cache with 4B entries, we
need 16K comparators: infeasible

CS61C L32 Caches III (14) Garcia, Spring 2010 © UCB

Final Type of Cache Miss
  3rd C: Capacity Misses

  miss that occurs because the cache has a limited
size

  miss that would not occur if we increase the size of
the cache

  sketchy definition, so just get the general idea

  This is the primary type of miss for Fully
Associative caches.

CS61C L32 Caches III (15) Garcia, Spring 2010 © UCB

N-Way Set Associative Cache (1/3)
  Memory address fields:

  Tag: same as before
  Offset: same as before
  Index: points us to the correct “row” (called a set in

this case)

  So what’s the difference?
  each set contains multiple blocks
  once we’ve found correct set, must compare with all

tags in that set to find our data

CS61C L32 Caches III (16) Garcia, Spring 2010 © UCB

Associative Cache Example

  Here’s a simple 2-way
set associative cache.

Memory	

Memory ���
Address	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

A	

B	

C	

D	

E	

F	

Cache 	

Index	

0	

0	

1	

1	

CS61C L32 Caches III (17) Garcia, Spring 2010 © UCB

N-Way Set Associative Cache (2/3)
  Basic Idea

  cache is direct-mapped w/respect to sets
  each set is fully associative with N blocks in it

  Given memory address:
  Find correct set using Index value.
  Compare Tag with all Tag values in the determined

set.
  If a match occurs, hit!, otherwise a miss.
  Finally, use the offset field as usual to find the desired

data within the block.

CS61C L32 Caches III (18) Garcia, Spring 2010 © UCB

N-Way Set Associative Cache (3/3)
  What’s so great about this?

  even a 2-way set assoc cache avoids a lot of conflict
misses

  hardware cost isn’t that bad: only need N
comparators

  In fact, for a cache with M blocks,
  it’s Direct-Mapped if it’s 1-way set assoc
  it’s Fully Assoc if it’s M-way set assoc
  so these two are just special cases of the more

general set associative design

CS61C L32 Caches III (19) Garcia, Spring 2010 © UCB

4-Way Set Associative Cache Circuit

tag"
index"

CS61C L32 Caches III (20) Garcia, Spring 2010 © UCB

Block Replacement Policy
  Direct-Mapped Cache

  index completely specifies position which position a block can go in
on a miss

  N-Way Set Assoc
  index specifies a set, but block can occupy any position within the

set on a miss

  Fully Associative
  block can be written into any position

  Question: if we have the choice, where should we write
an incoming block?
  If there are any locations with valid bit off (empty), then usually write

the new block into the first one.
  If all possible locations already have a valid block, we must pick a

replacement policy: rule by which we determine which block gets
“cached out” on a miss.

CS61C L32 Caches III (21) Garcia, Spring 2010 © UCB

Block Replacement Policy: LRU
  LRU (Least Recently Used)

  Idea: cache out block which has been accessed
(read or write) least recently

  Pro: temporal locality ⇒ recent past use implies
likely future use: in fact, this is a very effective policy

  Con: with 2-way set assoc, easy to keep track (one
LRU bit); with 4-way or greater, requires complicated
hardware and much time to keep track of this

CS61C L32 Caches III (22) Garcia, Spring 2010 © UCB

Block Replacement Example
  We have a 2-way set associative cache with

a four word total capacity and one word
blocks. We perform the following word
accesses (ignore bytes for this problem):

 0, 2, 0, 1, 4, 0, 2, 3, 5, 4
  How many hits and how many misses will

there be for the LRU block replacement
policy?

CS61C L32 Caches III (23) Garcia, Spring 2010 © UCB

Block Replacement Example: LRU

Addresses 0, 2, 0, 1, 4, 0, ...

0" lru"

2"

1" lru"

loc 0" loc 1"
set 0"

set 1"

0" 2"lru"set 0"
set 1"

 0: miss, bring into set 0 (loc 0)"

 2: miss, bring into set 0 (loc 1)"

 0: hit"

 1: miss, bring into set 1 (loc 0)"

 4: miss, bring into set 0 (loc 1, replace 2)"

 0: hit"

0"set 0"
set 1"

lru"lru"

0" 2"set 0"
set 1"

lru" lru"

set 0"
set 1"

0"
1" lru"

lru"2"4"lru"

set 0"
set 1"

0" 4"
1" lru"

lru" lru"

CS61C L32 Caches III (24) Garcia, Spring 2010 © UCB

Big Idea
  How to choose between associativity, block

size, replacement & write policy?
  Design against a performance model

  Minimize: Average Memory Access Time
 = Hit Time

 + Miss Penalty x Miss Rate
  influenced by technology & program behavior

  Create the illusion of a memory that is large,
cheap, and fast - on average

  How can we improve miss penalty?

CS61C L32 Caches III (25) Garcia, Spring 2010 © UCB

Improving Miss Penalty
  When caches first became popular, Miss

Penalty ~ 10 processor clock cycles
  Today 2400 MHz Processor (0.4 ns per clock

cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc" $2"

D
R

AM
"

$"

MEM"

Solution: another cache between memory and the
processor cache: Second Level (L2) Cache

CS61C L32 Caches III (26) Garcia, Spring 2010 © UCB

Peer Instruction

1.  A 2-way set-associative cache can be
outperformed by a direct-mapped cache.

2.  Larger block size ⇒ lower miss rate

 12
a) FF
b) FT
c) TF
d) TT

CS61C L32 Caches III (27) Garcia, Spring 2010 © UCB

Peer Instruction Answer
1.  Sure, consider the caches from the previous

slides with the following workload: 0, 2, 0, 4, 2
2-way: 0m, 2m, 0h, 4m, 2m;
DM: 0m, 2m, 0h, 4m, 2h

2.  Larger block size ⇒ lower miss rate, true until a
certain point, and then the ping-pong effect
takes over

1.  A 2-way set-associative cache can be
outperformed by a direct-mapped cache.

2.  Larger block size ⇒ lower miss rate

 12
a) FF
b) FT
c) TF
d) TT

CS61C L32 Caches III (28) Garcia, Spring 2010 © UCB

And in Conclusion…
  We’ve discussed memory caching in detail. Caching in general

shows up over and over in computer systems
  Filesystem cache, Web page cache, Game databases / tablebases,

Software memoization, Others?

  Big idea: if something is expensive but we want to do it repeatedly,
do it once and cache the result.

  Cache design choices:
  Size of cache: speed v. capacity
  Block size (i.e., cache aspect ratio)
  Write Policy (Write through v. write back
  Associativity choice of N (direct-mapped v. set v. fully associative)
  Block replacement policy
  2nd level cache?
  3rd level cache?

  Use performance model to pick between choices, depending on
programs, technology, budget, ...

CS61C L32 Caches III (29) Garcia, Spring 2010 © UCB

Bonus slides
  These are extra slides that used to be

included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

  The slides will appear in the order they would
have in the normal presentation

CS61C L32 Caches III (30) Garcia, Spring 2010 © UCB

Analyzing Multi-level cache hierarchy

Proc" $2"

D
R

AM
"

$"

L1 hit "
time"

L1 Miss Rate"
L1 Miss Penalty"Avg Mem Access Time = "

"L1 Hit Time + L1 Miss Rate * L1 Miss Penalty"
L1 Miss Penalty = "

"L2 Hit Time + L2 Miss Rate * L2 Miss Penalty"
Avg Mem Access Time = "

"L1 Hit Time + L1 Miss Rate *  
"(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)"

L2 hit "
time" L2 Miss Rate"

L2 Miss Penalty"

CS61C L32 Caches III (31) Garcia, Spring 2010 © UCB

Example
  Assume

  Hit Time = 1 cycle
  Miss rate = 5%
  Miss penalty = 20 cycles
  Calculate AMAT…

  Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS61C L32 Caches III (32) Garcia, Spring 2010 © UCB

Ways to reduce miss rate
  Larger cache

  limited by cost and technology
  hit time of first level cache < cycle time (bigger

caches are slower)

  More places in the cache to put each block of
memory – associativity
  fully-associative
  any block any line

  N-way set associated
  N places for each block
  direct map: N=1

CS61C L32 Caches III (33) Garcia, Spring 2010 © UCB

Typical Scale
  L1

  size: tens of KB
  hit time: complete in one clock cycle
  miss rates: 1-5%

  L2:
  size: hundreds of KB
  hit time: few clock cycles
  miss rates: 10-20%

  L2 miss rate is fraction of L1 misses that also
miss in L2
  why so high?

CS61C L32 Caches III (34) Garcia, Spring 2010 © UCB

Example: with L2 cache
  Assume

  L1 Hit Time = 1 cycle
  L1 Miss rate = 5%
  L2 Hit Time = 5 cycles
  L2 Miss rate = 15% (% L1 misses that miss)
  L2 Miss Penalty = 200 cycles

  L1 miss penalty = 5 + 0.15 * 200 = 35
  Avg mem access time = 1 + 0.05 x 35

 = 2.75 cycles

CS61C L32 Caches III (35) Garcia, Spring 2010 © UCB

Example: without L2 cache
  Assume

  L1 Hit Time = 1 cycle
  L1 Miss rate = 5%
  L1 Miss Penalty = 200 cycles

  Avg mem access time = 1 + 0.05 x 200
 = 11 cycles

  4x faster with L2 cache! (2.75 vs. 11)

  Cache
  32 KB Instructions and 32 KB

Data L1 caches
  External L2 Cache interface

with integrated controller
and cache tags, supports up
to 1 MByte external L2 cache

  Dual Memory Management
Units (MMU) with Translation
Lookaside Buffers (TLB)

  Pipelining
  Superscalar (3 inst/cycle)
  6 execution units (2 integer

and 1 double precision IEEE
floating point)

An actual CPU – Early PowerPC

CS61C L32 Caches III (37) Garcia, Spring 2010 © UCB

An Actual CPU – Pentium M

32KB I$"

32KB D$"

