
inst.eecs.berkeley.edu/~cs61c

UCB CS61C : Machine
Structures

Lecture 30 – Caches I
2010-04-09

C TOP LANGUAGE ONCE AGAIN

TA Bing Xia

C TOP LANGUAGE ONCE AGAIN

After more than 4 years C is back at position number 1
in the TIOBE index. The scores for C have been pretty
constant through the years, varying between the 15%
and 20% market share for almost 10 years.

www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Review : Pipelining

� Pipeline challenge is hazards

� Forwarding helps w/many data hazards

� Delayed branch helps with control hazard in
our 5 stage pipeline

� Data hazards w/Loads → Load Delay Slot

CS61C L30 Caches I (2) Garcia, Spring 2008 © UCB

� Data hazards w/Loads → Load Delay Slot

� Interlock →“smart” CPU has HW to detect if

conflict with inst following load, if so it stalls

� More aggressive performance (discussed
in section next week)

� Superscalar (parallelism)

� Out-of-order execution

The Big Picture

Processor
(active)

Computer

Control

Memory
(passive)
(where

Devices

Input

Keyboard,
Mouse

Disk,

CS61C L30 Caches I (3) Garcia, Spring 2008 © UCB

Control
(“brain”)

Datapath
(“brawn”)

(where
programs,
data live

when
running)

Output

Display,
Printer

Disk,
Network

Memory Hierarchy

� Processor

� holds data in register file (~100 Bytes)

� Registers accessed on nanosecond timescale

� Memory (we’ll call “main memory”)

� More capacity than registers (~Gbytes)

I.e., storage in

computer systems

CS61C L30 Caches I (4) Garcia, Spring 2008 © UCB

� More capacity than registers (~Gbytes)

� Access time ~50-100 ns

� Hundreds of clock cycles per memory
access?!

� Disk

� HUGE capacity (virtually limitless)

� VERY slow: runs ~milliseconds

Motivation: Why We Use Caches (written
$)
� 1989 first Intel CPU with cache on chip

� 1998 Pentium III has two cache levels on
chip µProc

60%/yr.
1000 CPU

P
e

rf
o

rm
a

n
c

e

CS61C L30 Caches I (5) Garcia, Spring 2008 © UCB

DRAM
7%/yr.

1

10

100

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
e

rf
o

rm
a

n
c

e

Memory Caching

� Mismatch between processor and
memory speeds leads us to add a new
level: a memory cache

� Implemented with same IC processing
technology as the CPU (usually

CS61C L30 Caches I (6) Garcia, Spring 2008 © UCB

technology as the CPU (usually
integrated on same chip): faster but more
expensive than DRAM memory.

� Cache is a copy of a subset of main
memory.

� Most processors have separate caches
for instructions and data.

Memory Hierarchy

Processor

Increasing
Distance

from Proc.,
Decreasing

speed

Level 1

Level 2

Higher

Levels in
memory

CS61C L30 Caches I (7) Garcia, Spring 2008 © UCB

Size of memory at each level

speedLevel 2

Level n

Level 3

. . .Lower

memory
hierarchy

As we move to deeper levels the latency
goes up and price per bit goes down.

Memory Hierarchy

� If level closer to Processor, it is:

� Smaller

� Faster

� More expensive

� subset of lower levels (contains most recently

CS61C L30 Caches I (8) Garcia, Spring 2008 © UCB

� subset of lower levels (contains most recently
used data)

� Lowest Level (usually disk) contains all
available data (does it go beyond the
disk?)

� Memory Hierarchy presents the
processor with the illusion of a very large
& fast memory

Memory Hierarchy Analogy: Library (1/2)

� You’re writing a term paper (Processor) at
a table in Doe

� Doe Library is equivalent to disk

� essentially limitless capacity

� very slow to retrieve a book

CS61C L30 Caches I (9) Garcia, Spring 2008 © UCB

� very slow to retrieve a book

� Table is main memory

� smaller capacity: means you must return
book when table fills up

� easier and faster to find a book there once
you’ve already retrieved it

Memory Hierarchy Analogy: Library (2/2)

� Open books on table are cache

� smaller capacity: can have very few open
books fit on table; again, when table fills up,
you must close a book

� much, much faster to retrieve data

CS61C L30 Caches I (10) Garcia, Spring 2008 © UCB

� Illusion created: whole library open on
the tabletop

� Keep as many recently used books open on
table as possible since likely to use again

� Also keep as many books on table as
possible, since faster than going to library

Memory Hierarchy Basis

� Cache contains copies of data in memory
that are being used.

� Memory contains copies of data on disk
that are being used.

� Caches work on the principles of

CS61C L30 Caches I (11) Garcia, Spring 2008 © UCB

� Caches work on the principles of
temporal and spatial locality.

� Temporal Locality: if we use it now, chances
are we’ll want to use it again soon.

� Spatial Locality: if we use a piece of memory,
chances are we’ll use the neighboring pieces
soon.

Cache Design

� How do we organize cache?

� Where does each memory address map
to?

� (Remember that cache is subset of memory,
so multiple memory addresses map to the

CS61C L30 Caches I (12) Garcia, Spring 2008 © UCB

so multiple memory addresses map to the
same cache location.)

� How do we know which elements are in
cache?

� How do we quickly locate them?

Administrivia

� Project 2 due next Friday

� Find a partner!

� A good partner is someone…

� You might want to work with the same person
on project 3 (and maybe other classes)

CS61C L30 Caches I (13) Garcia, Spring 2008 © UCB

� Faux exam 2 soon

Direct-Mapped Cache (1/4)

� In a direct-mapped cache, each memory
address is associated with one possible
block within the cache

� Therefore, we only need to look in a single
location in the cache for the data if it exists in

CS61C L30 Caches I (14) Garcia, Spring 2008 © UCB

the cache

� Block is the unit of transfer between cache
and memory

Direct-Mapped Cache (2/4)

Cache Location 0 can be

Memory
Memory

Address

0
1
2
3
4
5

4 Byte Direct

Mapped Cache

Cache

Index
0
1
2
3

Block size = 1 byte

CS61C L30 Caches I (15) Garcia, Spring 2008 © UCB

Cache Location 0 can be
occupied by data from:

� Memory location 0, 4, 8, ...

� 4 blocks ⇒⇒⇒⇒ any memory
location that is multiple of 4

5
6
7
8
9
A
B
C
D
E
F

What if we wanted a block
to be bigger than one byte?

Direct-Mapped Cache (3/4)

Memory
Memory

Address

0
2
4
6
8
A

8 Byte Direct

Mapped Cache

Cache

Index
0
1
2
3

01
23

etc
Block size = 2 bytes

45
67
89

CS61C L30 Caches I (16) Garcia, Spring 2008 © UCB

� When we ask for a byte, the
system finds out the right block,
and loads it all!
� How does it know right block?
� How do we select the byte?

� E.g., Mem address 11101?
� How does it know WHICH

colored block it originated from?
� What do you do at baggage claim?

A
C
E

10
12
14
16
18
1A
1C
1E

etc

Direct-Mapped Cache (4/4)

Memory
(addresses shown)

Memory Address

0
2
4
6
8
A

8 Byte Direct

Mapped Cache w/Tag!

Cache

Index
0
1
2
3

01
23

etc

Tag Data
(Block size = 2 bytes)

45
67
89

8
2

1E
140

1

1
0

3
2

CS61C L30 Caches I (17) Garcia, Spring 2008 © UCB

� What should go in the tag?
� Do we need the entire address?

� What do all these tags have in
common?

� What did we do with the immediate
when we were branch addressing,
always count by bytes?

� Why not count by cache #?
� It’s useful to draw memory with the

same width as the block size

A
C
E

10
12
14
16
18
1A
1C

1E

etc (Block size = 2 bytes)1

2

3

Cache#

� Since multiple memory addresses map to
same cache index, how do we tell which
one is in there?

� What if we have a block size > 1 byte?

� Answer: divide memory address into

Issues with Direct-Mapped

CS61C L30 Caches I (18) Garcia, Spring 2008 © UCB

� Answer: divide memory address into
three fields

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

Direct-Mapped Cache Terminology

� All fields are read as unsigned integers.

� Index

� specifies the cache index (which “row”/block
of the cache we should look in)

� Offset

CS61C L30 Caches I (19) Garcia, Spring 2008 © UCB

� Offset

� once we’ve found correct block, specifies
which byte within the block we want

� Tag

� the remaining bits after offset and index are
determined; these are used to distinguish
between all the memory addresses that map
to the same location

AREA (cache size, B)
= HEIGHT (# of blocks)

* WIDTH (size of one block, B/block)

WIDTH
(size of one block, B/block)

2(H+W) = 2H * 2W

Tag Index Offset

TIO Dan’s great cache mnemonic

CS61C L30 Caches I (20) Garcia, Spring 2008 © UCB

HEIGHT
(# of blocks)

AREA
(cache size,

B)

Direct-Mapped Cache Example (1/3)

� Suppose we have a 8B of data in a direct-
mapped cache with 2 byte blocks

� Sound familiar?

� Determine the size of the tag, index and
offset fields if we’re using a 32-bit

CS61C L30 Caches I (21) Garcia, Spring 2008 © UCB

offset fields if we’re using a 32-bit
architecture

� Offset

� need to specify correct byte within a block

� block contains 2 bytes

= 21 bytes

� need 1 bit to specify correct byte

Direct-Mapped Cache Example (2/3)

� Index: (~index into an “array of blocks”)

� need to specify correct block in cache

� cache contains 8 B = 23 bytes

� block contains 2 B = 21 bytes

� # blocks/cache

CS61C L30 Caches I (22) Garcia, Spring 2008 © UCB

� # blocks/cache

= bytes/cache
bytes/block

= 23 bytes/cache
21 bytes/block

= 22 blocks/cache

� need 2 bits to specify this many blocks

Direct-Mapped Cache Example (3/3)

� Tag: use remaining bits as tag

� tag length = addr length – offset - index
= 32 - 1 - 2 bits
= 29 bits

� so tag is leftmost 29 bits of memory address

CS61C L30 Caches I (23) Garcia, Spring 2008 © UCB

� Why not full 32 bit address as tag?

� All bytes within block need same address (4b)

� Index must be same for every address within
a block, so it’s redundant in tag check, thus
can leave off to save memory (here 10 bits)

And in Conclusion…

� We would like to have the capacity of disk
at the speed of the processor:
unfortunately this is not feasible.

� So we create a memory hierarchy:

� each successively lower level contains “most

CS61C L30 Caches I (24) Garcia, Spring 2008 © UCB

� each successively lower level contains “most
used” data from next higher level

� exploits temporal & spatial locality

� do the common case fast, worry less about
the exceptions
(design principle of MIPS)

� Locality of reference is a Big Idea

