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C TOP LANGUAGE ONCE AGAIN

TA Bing Xia

C TOP LANGUAGE ONCE AGAIN

After more than 4 years C is back at position number 1 
in the TIOBE index. The scores for C have been pretty 
constant through the years, varying between the 15% 
and 20% market share for almost 10 years. 

www.tiobe.com/index.php/content/paperinfo/tpci/index.html



Review : Pipelining

� Pipeline challenge is hazards

� Forwarding helps w/many data hazards

� Delayed branch helps with control hazard in 
our 5 stage pipeline

� Data hazards w/Loads → Load Delay Slot
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� Data hazards w/Loads → Load Delay Slot

� Interlock →“smart” CPU has HW to detect if 

conflict with inst following load, if so it stalls 

� More aggressive performance (discussed 
in section next week)

� Superscalar (parallelism)

� Out-of-order execution



The Big Picture

Processor
(active)

Computer

Control

Memory
(passive)
(where 

Devices

Input

Keyboard, 
Mouse

Disk,

CS61C L30 Caches I (3) Garcia, Spring 2008 © UCB

Control
(“brain”)

Datapath
(“brawn”)

(where 
programs, 
data live 

when
running)

Output

Display, 
Printer

Disk,
Network



Memory Hierarchy

� Processor

� holds data in register file (~100 Bytes)

� Registers accessed on nanosecond timescale

� Memory (we’ll call “main memory”)

� More capacity than registers (~Gbytes)

I.e., storage in

computer systems

CS61C L30 Caches I (4) Garcia, Spring 2008 © UCB

� More capacity than registers (~Gbytes)

� Access time ~50-100 ns

� Hundreds of clock cycles per memory 
access?!

� Disk

� HUGE capacity (virtually limitless)

� VERY slow: runs ~milliseconds



Motivation: Why We Use Caches (written 
$)
� 1989 first Intel CPU with cache on chip

� 1998 Pentium III has two cache levels on 
chip µProc
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DRAM
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Memory Caching

� Mismatch between processor and 
memory speeds leads us to add a new 
level: a memory cache

� Implemented with same IC processing 
technology as the CPU (usually 
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technology as the CPU (usually 
integrated on same chip): faster but more 
expensive than DRAM memory.

� Cache is a copy of a subset of main 
memory.

� Most processors have separate caches 
for instructions and data.



Memory Hierarchy

Processor
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from Proc.,
Decreasing  

speed

Level 1

Level 2

Higher

Levels in 
memory 
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Size of memory at each level

speedLevel 2

Level n

Level 3

. . .Lower

memory 
hierarchy

As we move to deeper levels the latency 
goes up and price per bit goes down.



Memory Hierarchy

� If level closer to Processor, it is:

� Smaller

� Faster

� More expensive

� subset of lower levels (contains most recently 
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� subset of lower levels (contains most recently 
used data)

� Lowest Level (usually disk) contains all 
available data (does it go beyond the 
disk?)

� Memory Hierarchy presents the 
processor with the illusion of a very large 
& fast memory



Memory Hierarchy Analogy: Library (1/2)

� You’re writing a term paper (Processor) at 
a table in Doe

� Doe Library is equivalent to disk

� essentially limitless capacity

� very slow to retrieve a book
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� very slow to retrieve a book

� Table is main memory

� smaller capacity: means you must return 
book when table fills up

� easier and faster to find a book there once 
you’ve already retrieved it



Memory Hierarchy Analogy: Library (2/2)

� Open books on table are cache

� smaller capacity: can have very few open 
books fit on table; again, when table fills up, 
you must close a book

� much, much faster to retrieve data
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� Illusion created: whole library open on 
the tabletop 

� Keep as many recently used books open on 
table as possible since likely to use again

� Also keep as many books on table as 
possible, since faster than going to library



Memory Hierarchy Basis

� Cache contains copies of data in memory 
that are being used.

� Memory contains copies of data on disk 
that are being used.

� Caches work on the principles of 
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� Caches work on the principles of 
temporal and spatial locality.

� Temporal Locality: if we use it now, chances 
are we’ll want to use it again soon.

� Spatial Locality: if we use a piece of memory, 
chances are we’ll use the neighboring pieces 
soon.



Cache Design

� How do we organize cache?

� Where does each memory address map 
to?

� (Remember that cache is subset of memory, 
so multiple memory addresses map to the 
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so multiple memory addresses map to the 
same cache location.)

� How do we know which elements are in 
cache?

� How do we quickly locate them?



Administrivia

� Project 2 due next Friday

� Find a partner!

� A good partner is someone…

� You might want to work with the same person 
on project 3 (and maybe other classes)
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� Faux exam 2 soon



Direct-Mapped Cache (1/4)

� In a direct-mapped cache, each memory 
address is associated with one possible 
block within the cache

� Therefore, we only need to look in a single 
location in the cache for the data if it exists in 
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the cache

� Block is the unit of transfer between cache 
and memory



Direct-Mapped Cache (2/4)

Cache Location 0 can be

Memory
Memory 

Address

0
1
2
3
4
5

4  Byte Direct 

Mapped Cache

Cache 

Index
0
1
2
3

Block size = 1 byte
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Cache Location 0 can be
occupied by data from:

� Memory location 0, 4, 8, ... 

� 4 blocks ⇒⇒⇒⇒    any memory 
location that is multiple of 4

5
6
7
8
9
A
B
C
D
E
F

What if we wanted a block
to be bigger than one byte?



Direct-Mapped Cache (3/4)

Memory
Memory 

Address

0
2
4
6
8
A

8  Byte Direct 

Mapped Cache

Cache 

Index
0
1
2
3

01
23

etc
Block size = 2 bytes

45
67
89
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� When we ask for a byte, the 
system finds out the right block, 
and loads it all!
� How does it know right block?
� How do we select the byte?

� E.g., Mem address 11101?
� How does it know WHICH 

colored block it originated from?
� What do you do at baggage claim?

A
C
E

10
12
14
16
18
1A
1C
1E

etc



Direct-Mapped Cache (4/4)

Memory
(addresses shown)

Memory Address

0
2
4
6
8
A

8  Byte Direct 

Mapped Cache w/Tag!

Cache 

Index
0
1
2
3

01
23

etc

Tag          Data
(Block size = 2 bytes)

45
67
89

8
2

1E
140

1

1
0

3
2
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� What should go in the tag?
� Do we need the entire address?

� What do all these tags have in 
common?

� What did we do with the immediate 
when we were branch addressing, 
always count by  bytes?

� Why not count by cache #?
� It’s useful to draw memory with the 

same width as the block size

A
C
E

10
12
14
16
18
1A
1C

1E

etc (Block size = 2 bytes)1

2

3

Cache#



� Since multiple memory addresses map to 
same cache index, how do we tell which 
one is in there?

� What if we have a block size > 1 byte?

� Answer: divide memory address into 

Issues with Direct-Mapped
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� Answer: divide memory address into 
three fields

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block



Direct-Mapped Cache Terminology

� All fields are read as unsigned integers.

� Index

� specifies the cache index (which “row”/block 
of the cache we should look in)

� Offset
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� Offset

� once we’ve found correct block, specifies 
which byte within the block we want

� Tag

� the remaining bits after offset and index are 
determined; these are used to distinguish 
between all the memory addresses that map 
to the same location



AREA (cache size, B)
= HEIGHT (# of blocks)

* WIDTH (size of one block, B/block)

WIDTH 
(size of one block, B/block)

2(H+W) = 2H * 2W

Tag Index Offset

TIO Dan’s great cache mnemonic
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HEIGHT
(# of blocks)

AREA
(cache size, 

B)



Direct-Mapped Cache Example (1/3)

� Suppose we have a 8B of data in a direct-
mapped cache with 2 byte blocks

� Sound familiar?

� Determine the size of the tag, index and 
offset fields if we’re using a 32-bit 
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offset fields if we’re using a 32-bit 
architecture

� Offset

� need to specify correct byte within a block

� block contains 2 bytes

= 21 bytes

� need 1 bit to specify correct byte



Direct-Mapped Cache Example (2/3)

� Index: (~index into an “array of blocks”)

� need to specify correct block in cache

� cache contains 8 B = 23 bytes

� block contains 2 B = 21 bytes

� # blocks/cache
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� # blocks/cache

= bytes/cache
bytes/block

= 23 bytes/cache
21 bytes/block

= 22 blocks/cache

� need 2 bits to specify this many blocks



Direct-Mapped Cache Example (3/3)

� Tag: use remaining bits as tag

� tag length = addr length – offset - index
= 32 - 1 - 2 bits
= 29 bits

� so tag is leftmost 29 bits of memory address
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� Why not full 32 bit address as tag?

� All bytes within block need same address (4b)

� Index must be same for every address within 
a block, so it’s redundant in tag check, thus 
can leave off to save memory (here 10 bits)



And in Conclusion…

� We would like to have the capacity of disk 
at the speed of the processor: 
unfortunately this is not feasible.

� So we create a memory hierarchy:

� each successively lower level contains “most 
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� each successively lower level contains “most 
used” data from next higher level

� exploits temporal & spatial locality 

� do the common case fast, worry less about 
the exceptions 
(design principle of MIPS)

� Locality of reference is a Big Idea


