
inst.eecs.berkeley.edu/~cs61c

UCB CS61C : Machine
Structures

Lecture 30 – Caches I
2010-04-09

C TOP LANGUAGE ONCE AGAIN

After more than 4 years C is back at position number 1
in the TIOBE index. The scores for C have been pretty
constant through the years, varying between the 15%
and 20% market share for almost 10 years.

TA Bing Xia

www.tiobe.com/index.php/content/paperinfo/tpci/index.html

CS61C L30 Caches I (2) Garcia, Spring 2008 © UCB

Review : Pipelining

� Pipeline challenge is hazards

� Forwarding helps w/many data hazards

� Delayed branch helps with control hazard in
our 5 stage pipeline

� Data hazards w/Loads → Load Delay Slot

� Interlock →“smart” CPU has HW to detect if
conflict with inst following load, if so it stalls

� More aggressive performance (discussed
in section next week)

� Superscalar (parallelism)

� Out-of-order execution

CS61C L30 Caches I (3) Garcia, Spring 2008 © UCB

The Big Picture

Processor
(active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)
(where

programs,
data live

when
running)

Devices

Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

CS61C L30 Caches I (4) Garcia, Spring 2008 © UCB

Memory Hierarchy

� Processor

� holds data in register file (~100 Bytes)

� Registers accessed on nanosecond timescale

� Memory (we’ll call “main memory”)

� More capacity than registers (~Gbytes)

� Access time ~50-100 ns

� Hundreds of clock cycles per memory
access?!

� Disk

� HUGE capacity (virtually limitless)

� VERY slow: runs ~milliseconds

I.e., storage in

computer systems

CS61C L30 Caches I (5) Garcia, Spring 2008 © UCB

Motivation: Why We Use Caches (written
$)
� 1989 first Intel CPU with cache on chip

� 1998 Pentium III has two cache levels on
chip µProc

60%/yr.

DRAM
7%/yr.

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
e

rf
o

rm
a

n
c

e

CS61C L30 Caches I (6) Garcia, Spring 2008 © UCB

Memory Caching

� Mismatch between processor and
memory speeds leads us to add a new
level: a memory cache

� Implemented with same IC processing
technology as the CPU (usually
integrated on same chip): faster but more
expensive than DRAM memory.

� Cache is a copy of a subset of main
memory.

� Most processors have separate caches
for instructions and data.

CS61C L30 Caches I (7) Garcia, Spring 2008 © UCB

Memory Hierarchy

Processor

Size of memory at each level

Increasing
Distance

from Proc.,
Decreasing

speed

Level 1

Level 2

Level n

Level 3

. . .

Higher

Lower

Levels in
memory

hierarchy

As we move to deeper levels the latency
goes up and price per bit goes down.

CS61C L30 Caches I (8) Garcia, Spring 2008 © UCB

Memory Hierarchy

� If level closer to Processor, it is:

� Smaller

� Faster

� More expensive

� subset of lower levels (contains most recently
used data)

� Lowest Level (usually disk) contains all
available data (does it go beyond the
disk?)

� Memory Hierarchy presents the
processor with the illusion of a very large
& fast memory

CS61C L30 Caches I (9) Garcia, Spring 2008 © UCB

Memory Hierarchy Analogy: Library (1/2)

� You’re writing a term paper (Processor) at
a table in Doe

� Doe Library is equivalent to disk

� essentially limitless capacity

� very slow to retrieve a book

� Table is main memory

� smaller capacity: means you must return
book when table fills up

� easier and faster to find a book there once
you’ve already retrieved it

CS61C L30 Caches I (10) Garcia, Spring 2008 © UCB

Memory Hierarchy Analogy: Library (2/2)

� Open books on table are cache

� smaller capacity: can have very few open
books fit on table; again, when table fills up,
you must close a book

� much, much faster to retrieve data

� Illusion created: whole library open on
the tabletop

� Keep as many recently used books open on
table as possible since likely to use again

� Also keep as many books on table as
possible, since faster than going to library

CS61C L30 Caches I (11) Garcia, Spring 2008 © UCB

Memory Hierarchy Basis

� Cache contains copies of data in memory
that are being used.

� Memory contains copies of data on disk
that are being used.

� Caches work on the principles of
temporal and spatial locality.

� Temporal Locality: if we use it now, chances
are we’ll want to use it again soon.

� Spatial Locality: if we use a piece of memory,
chances are we’ll use the neighboring pieces
soon.

CS61C L30 Caches I (12) Garcia, Spring 2008 © UCB

Cache Design

� How do we organize cache?

� Where does each memory address map
to?

� (Remember that cache is subset of memory,
so multiple memory addresses map to the
same cache location.)

� How do we know which elements are in
cache?

� How do we quickly locate them?

CS61C L30 Caches I (13) Garcia, Spring 2008 © UCB

Administrivia

� Project 2 due next Friday

� Find a partner!

� A good partner is someone…

� You might want to work with the same person
on project 3 (and maybe other classes)

� Faux exam 2 soon

CS61C L30 Caches I (14) Garcia, Spring 2008 © UCB

Direct-Mapped Cache (1/4)

� In a direct-mapped cache, each memory
address is associated with one possible
block within the cache

� Therefore, we only need to look in a single
location in the cache for the data if it exists in
the cache

� Block is the unit of transfer between cache
and memory

CS61C L30 Caches I (15) Garcia, Spring 2008 © UCB

Direct-Mapped Cache (2/4)

Cache Location 0 can be
occupied by data from:

� Memory location 0, 4, 8, ...

� 4 blocks ⇒⇒⇒⇒ any memory
location that is multiple of 4

Memory
Memory

Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct

Mapped Cache

Cache

Index
0
1
2
3

What if we wanted a block
to be bigger than one byte?

Block size = 1 byte

CS61C L30 Caches I (16) Garcia, Spring 2008 © UCB

Direct-Mapped Cache (3/4)

� When we ask for a byte, the
system finds out the right block,
and loads it all!
� How does it know right block?
� How do we select the byte?

� E.g., Mem address 11101?
� How does it know WHICH

colored block it originated from?
� What do you do at baggage claim?

Memory
Memory

Address

0
2
4
6
8
A
C
E

10
12
14
16
18
1A
1C
1E

8 Byte Direct

Mapped Cache

Cache

Index
0
1
2
3

01
23

etc
Block size = 2 bytes

45
67
89

CS61C L30 Caches I (17) Garcia, Spring 2008 © UCB

Direct-Mapped Cache (4/4)

� What should go in the tag?
� Do we need the entire address?

� What do all these tags have in
common?

� What did we do with the immediate
when we were branch addressing,
always count by bytes?

� Why not count by cache #?
� It’s useful to draw memory with the

same width as the block size

Memory
(addresses shown)

Memory Address

0
2
4
6
8
A
C
E

10
12
14
16
18
1A
1C

1E

8 Byte Direct

Mapped Cache w/Tag!

Cache

Index
0
1
2
3

01
23

etc

Tag Data
(Block size = 2 bytes)

45
67
89

8
2

1E
140

1

2

3

Cache#

1
0

3
2

CS61C L30 Caches I (18) Garcia, Spring 2008 © UCB

� Since multiple memory addresses map to
same cache index, how do we tell which
one is in there?

� What if we have a block size > 1 byte?

� Answer: divide memory address into
three fields

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

Issues with Direct-Mapped

CS61C L30 Caches I (19) Garcia, Spring 2008 © UCB

Direct-Mapped Cache Terminology

� All fields are read as unsigned integers.

� Index

� specifies the cache index (which “row”/block
of the cache we should look in)

� Offset

� once we’ve found correct block, specifies
which byte within the block we want

� Tag

� the remaining bits after offset and index are
determined; these are used to distinguish
between all the memory addresses that map
to the same location

CS61C L30 Caches I (20) Garcia, Spring 2008 © UCB

AREA (cache size, B)
= HEIGHT (# of blocks)

* WIDTH (size of one block, B/block)
WIDTH

(size of one block, B/block)

HEIGHT
(# of blocks)

AREA
(cache size,

B)

2(H+W) = 2H * 2W

Tag Index Offset

TIO Dan’s great cache mnemonic

CS61C L30 Caches I (21) Garcia, Spring 2008 © UCB

Direct-Mapped Cache Example (1/3)

� Suppose we have a 8B of data in a direct-
mapped cache with 2 byte blocks

� Sound familiar?

� Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture

� Offset

� need to specify correct byte within a block

� block contains 2 bytes

= 21 bytes

� need 1 bit to specify correct byte

CS61C L30 Caches I (22) Garcia, Spring 2008 © UCB

Direct-Mapped Cache Example (2/3)

� Index: (~index into an “array of blocks”)

� need to specify correct block in cache

� cache contains 8 B = 23 bytes

� block contains 2 B = 21 bytes

� # blocks/cache

= bytes/cache
bytes/block

= 23 bytes/cache
21 bytes/block

= 22 blocks/cache

� need 2 bits to specify this many blocks

CS61C L30 Caches I (23) Garcia, Spring 2008 © UCB

Direct-Mapped Cache Example (3/3)

� Tag: use remaining bits as tag

� tag length = addr length – offset - index
= 32 - 1 - 2 bits
= 29 bits

� so tag is leftmost 29 bits of memory address

� Why not full 32 bit address as tag?

� All bytes within block need same address (4b)

� Index must be same for every address within
a block, so it’s redundant in tag check, thus
can leave off to save memory (here 10 bits)

CS61C L30 Caches I (24) Garcia, Spring 2008 © UCB

And in Conclusion…

� We would like to have the capacity of disk
at the speed of the processor:
unfortunately this is not feasible.

� So we create a memory hierarchy:

� each successively lower level contains “most
used” data from next higher level

� exploits temporal & spatial locality

� do the common case fast, worry less about
the exceptions
(design principle of MIPS)

� Locality of reference is a Big Idea

