
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 28 – CPU Design :
Pipelining to Improve Performance

 2010-04-05

Stanford Researchers have invented a monitoring
technique called “Instruction Footprint Recording
and Analysis” (IFRA) that collects info about the
hardware when it’s actually running (as opposed to
very slow simulations) to help pinpoint hardware
errors. When errors are detected, it takes a
“snapshot” of the current state to help reproduce it.
It can locate 96% of bugs, 80% w/time & location.

Lecturer SOE
Dan Garcia

www.technologyreview.com/computing/24933

CS61C L28 CPU Design : Pipelining to Improve Performance I (2) Garcia, Spring 2010 © UCB

Review: Single cycle datapath
  5 steps to design a processor

1.  Analyze instruction set ⇒ datapath requirements
2.  Select set of datapath components & establish clock methodology
3.  Assemble datapath meeting the requirements
4.  Analyze implementation of each instruction to determine setting of

control points that effects the register transfer.
5.  Assemble the control logic

  Control is the hard part
  MIPS makes that easier

  Instructions same size
  Source registers always in same place
  Immediates same size, location
  Operations always on registers/immediates

Control	

Datapath	

Memory	

Processor	

Input	

Output	

CS61C L28 CPU Design : Pipelining to Improve Performance I (3) Garcia, Spring 2010 © UCB

RegDst = add + sub ���
ALUSrc 	

 = ori + lw + sw ���
MemtoReg = lw ���
RegWrite = add + sub + ori + lw ���
MemWrite = sw ���
nPCsel = beq���
Jump = jump ���
ExtOp = lw + sw ���
ALUctr[0] = sub + beq (assume ALUctr is 0 ADD, 01: SUB, 10: OR)���
ALUctr[1] = or	

where,	

rtype = ~op5 • ~op4 • ~op3 • ~op2 • ~op1 • ~op0, ���
ori = ~op5 • ~op4 • op3 • op2 • ~op1 • op0 ���
lw = op5 • ~op4 • ~op3 • ~op2 • op1 • op0 ���
sw = op5 • ~op4 • op3 • ~op2 • op1 • op0���
beq = ~op5 • ~op4 • ~op3 • op2 • ~op1 • ~op0 ���
jump = ~op5 • ~op4 • ~op3 • ~op2 • op1 • ~op0	

add = rtype • func5 • ~func4 • ~func3 • ~func2 • ~func1 • ~func0���
sub = rtype • func5 • ~func4 • ~func3 • ~func2 • func1 • ~func0	

Omigosh omigosh,
do you know what

this means?

add"
sub"
ori"
lw"
sw"
beq"
jump"

RegDst"
ALUSrc"
MemtoReg"
RegWrite"
MemWrite"
nPCsel"
Jump"
ExtOp"
ALUctr[0]"
ALUctr[1]"

“AND” logic" “OR” logic"

opcode" func"
How We Build The Controller

CS61C L28 CPU Design : Pipelining to Improve Performance I (4) Garcia, Spring 2010 © UCB

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)#

Assembly Language
Program (e.g.,MIPS)#

Machine Language
Program (MIPS)#

Hardware Architecture Description
(e.g., block diagrams) "

Compiler!

Assembler!

Machine
Interpretation!

temp = v[k];#
v[k] = v[k+1];#
v[k+1] = temp;"

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111 !

Logic Circuit Description 
(Circuit Schematic Diagrams)#

Architecture
Implementation!

Call home, we’ve made HW/SW contact!

CS61C L28 CPU Design : Pipelining to Improve Performance I (5) Garcia, Spring 2010 © UCB

Processor Performance
  Can we estimate the clock rate (frequency) of our

single-cycle processor? We know:
  1 cycle per instruction
  lw is the most demanding instruction.
  Assume these delays for major pieces of the datapath:

  Instr. Mem, ALU, Data Mem : 2ns each, regfile 1ns
  Instruction execution requires: 2 + 1 + 2 + 2 + 1 = 8ns

 ⇒ 125 MHz

  What can we do to improve clock rate?
  Will this improve performance as well?

  We want increases in clock rate to result in programs
executing quicker.

CS61C L28 CPU Design : Pipelining to Improve Performance I (6) Garcia, Spring 2010 © UCB

Gotta Do Laundry

  Ann, Brian, Cathy, Dave
each have one load of clothes to
wash, dry, fold, and put away
  Washer takes 30 minutes

  Dryer takes 30 minutes

  “Folder” takes 30 minutes

  “Stasher” takes 30 minutes to put
clothes into drawers

A B C D

CS61C L28 CPU Design : Pipelining to Improve Performance I (7) Garcia, Spring 2010 © UCB

Sequential Laundry

  Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30

Time
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

CS61C L28 CPU Design : Pipelining to Improve Performance I (8) Garcia, Spring 2010 © UCB

Pipelined Laundry

  Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B
C
D

A

12 2 AM 6 PM 7 8 9 10 11 1

Time 30 30 30 30 30 30 30

CS61C L28 CPU Design : Pipelining to Improve Performance I (9) Garcia, Spring 2010 © UCB

General Definitions

  Latency: time to completely execute a certain
task
  for example, time to read a sector from disk is disk

access time or disk latency

  Throughput: amount of work that can be
done over a period of time

CS61C L28 CPU Design : Pipelining to Improve Performance I (10) Garcia, Spring 2010 © UCB

  Pipelining doesn’t help
latency of single task, it
helps throughput of entire
workload

  Multiple tasks operating
simultaneously using
different resources

  Potential speedup =
Number pipe stages

  Time to “fill” pipeline and
time to “drain” it reduces
speedup:
2.3X v. 4X in this example

6 PM 7 8 9
Time

B
C
D

A
30 30 30 30 30 30 30

T
a
s
k

O
r
d
e
r

Pipelining Lessons (1/2)

CS61C L28 CPU Design : Pipelining to Improve Performance I (11) Garcia, Spring 2010 © UCB

  Suppose new Washer
takes 20 minutes,
new Stasher takes 20
minutes. How much
faster is pipeline?

  Pipeline rate limited
by slowest pipeline
stage

  Unbalanced lengths
of pipe stages
reduces speedup

6 PM 7 8 9
Time

B
C
D

A
30 30 30 30 30 30 30

T
a
s
k

O
r
d
e
r

Pipelining Lessons (2/2)

CS61C L28 CPU Design : Pipelining to Improve Performance I (12) Garcia, Spring 2010 © UCB

1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers
3) Exec:

 Mem-ref: Calculate Address
 Arith-log: Perform Operation

4) Mem:
 Load: Read Data from Memory
 Store: Write Data to Memory

5) WB: Write Data Back to Register

Steps in Executing MIPS

CS61C L28 CPU Design : Pipelining to Improve Performance I (13) Garcia, Spring 2010 © UCB

  Every instruction must take same number of
steps, also called pipeline “stages”, so some will
go idle sometimes

IFtch#Dcd# Exec#Mem# WB#
IFtch#Dcd# Exec#Mem# WB#

IFtch#Dcd# Exec#Mem# WB#
IFtch#Dcd# Exec#Mem# WB#

IFtch#Dcd# Exec#Mem# WB#
IFtch#Dcd# Exec#Mem# WB#

Time#

Pipelined Execution Representation

CS61C L28 CPU Design : Pipelining to Improve Performance I (14) Garcia, Spring 2010 © UCB

  Use datapath figure to represent pipeline

IFtch#Dcd# Exec#Mem# WB#

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

PC
"

in
st

ru
ct

io
n"

m
em

or
y"

+4"

rt"
rs"
rd"

re
gi

st
er

s"

ALU	

D
at

a"
m

em
or

y"

imm"

1. Instruction"
Fetch"

2. Decode/"
 Register Read"

3. Execute" 4. Memory"5. Write  
Back"

Review: Datapath for MIPS

CS61C L28 CPU Design : Pipelining to Improve Performance I (15) Garcia, Spring 2010 © UCB

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

 I$	

Time (clock cycles)

 I$	

A
LU
	

Reg	

Reg	

 I$	

 D$	

A
LU
	

A
LU
	

Reg	

 D$	

Reg	

 I$	

 D$	

Reg	

A

LU
	

Reg	

 Reg	

Reg	

 D$	

Reg	

 D$	

A
LU
	

(In Reg, right half highlight read, left half write)"

Reg	

 I$	

Graphical Pipeline Representation

CS61C L28 CPU Design : Pipelining to Improve Performance I (16) Garcia, Spring 2010 © UCB

  Suppose 2 ns for memory access, 2 ns for
ALU operation, and 1 ns for register file read
or write; compute instruction rate

  Nonpipelined Execution:
  lw : IF + Read Reg + ALU + Memory + Write Reg =

2 + 1 + 2 + 2 + 1 = 8 ns
  add: IF + Read Reg + ALU + Write Reg

= 2 + 1 + 2 + 1 = 6 ns
(recall 8ns for single-cycle processor)

  Pipelined Execution:
  Max(IF,Read Reg,ALU,Memory,Write Reg) = 2 ns

Example

CS61C L28 CPU Design : Pipelining to Improve Performance I (17) Garcia, Spring 2010 © UCB

Pipeline Hazard: Matching socks in later load

  A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

bubble

12 2 AM 6 PM 7 8 9 10 11 1

Time 30 30 30 30 30 30 30

CS61C L28 CPU Design : Pipelining to Improve Performance I (18) Garcia, Spring 2010 © UCB

Administrivia
  Administrivia?

CS61C L28 CPU Design : Pipelining to Improve Performance I (19) Garcia, Spring 2010 © UCB

Problems for Pipelining CPUs

  Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle
  Structural hazards: HW cannot support some

combination of instructions (single person to fold and
put clothes away)

  Control hazards: Pipelining of branches causes later
instruction fetches to wait for the result of the branch

  Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

  These might result in pipeline stalls or “bubbles”
in the pipeline.

CS61C L28 CPU Design : Pipelining to Improve Performance I (20) Garcia, Spring 2010 © UCB

Read same memory twice in same clock cycle#

 I$	

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Structural Hazard #1: Single Memory (1/2)

CS61C L28 CPU Design : Pipelining to Improve Performance I (21) Garcia, Spring 2010 © UCB

Structural Hazard #1: Single Memory (2/2)

  Solution:
  infeasible and inefficient to create second memory
  (We’ll learn about this more next week)
  so simulate this by having two Level 1 Caches (a

temporary smaller [of usually most recently used]
copy of memory)

  have both an L1 Instruction Cache and
an L1 Data Cache

  need more complex hardware to control when
both caches miss

CS61C L28 CPU Design : Pipelining to Improve Performance I (22) Garcia, Spring 2010 © UCB

Structural Hazard #2: Registers (1/2)

Can we read and write to registers simultaneously?#

 I$	

sw

Instr 1

Instr 2

Instr 3

Instr 4
A

LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L28 CPU Design : Pipelining to Improve Performance I (23) Garcia, Spring 2010 © UCB

Structural Hazard #2: Registers (2/2)

  Two different solutions have been used:
1) RegFile access is VERY fast: takes less than half the

time of ALU stage
  Write to Registers during first half of each clock cycle
  Read from Registers during second half of each clock

cycle

2) Build RegFile with independent read and write
ports

  Result: can perform Read and Write during
same clock cycle

CS61C L28 CPU Design : Pipelining to Improve Performance I (24) Garcia, Spring 2010 © UCB

1)  Thanks to pipelining, I have reduced the time it
took me to wash my one shirt.

2)  Longer pipelines are always a win (since less work
per stage & a faster clock).

Peer Instruction

 12
a) FF
b) FT
c) TF
d) TT

CS61C L28 CPU Design : Pipelining to Improve Performance I (25) Garcia, Spring 2010 © UCB

1)  Thanks to pipelining, I have reduced the time it
took me to wash my one shirt.

2)  Longer pipelines are always a win (since less work
per stage & a faster clock). F A L S E#
F A L S E#

1)  Throughput better, not execution time

2)  “…longer pipelines do usually mean faster clock,
but branches cause problems!”

Peer Instruction Answer

 12
a) FF
b) FT
c) TF
d) TT

CS61C L28 CPU Design : Pipelining to Improve Performance I (26) Garcia, Spring 2010 © UCB

Things to Remember

  Optimal Pipeline
  Each stage is executing part of an instruction each

clock cycle.
  One instruction finishes during each clock cycle.
  On average, execute far more quickly.

  What makes this work?
  Similarities between instructions allow us to use

same stages for all instructions (generally).
  Each stage takes about the same amount of time

as all others: little wasted time.

