inst.eecs.berkeley.edu/~csé6lc

UCB CS61C : Machine Structures

Lecture 28 - CPU Design :
Pipelining to Imgrove Performance
10-04-05

Lecturer SOE
Dan Garcia

CATCHING HARDWARE BUGS FASTER

Stanford Researchers have invented a monitoring

technique called “I Footprint Recording
and Analysis” (IFRA) that collects info about the
hard! when it's lty ing (as dto

very slow simulations) o help pinpoint h
errors. When errors are detected, it takes a
“snapshot” of the current state fo help reproduce it.
It can locate 96% of bugs, 80% w/time & location.

www . technologyreview.com/computing/24933

How We Build The Controller

RegDst = add + sub [~ RegDst
| ALUSIe

ALUSrc =ori+Iw +sw |- MemtoReg

MemtoReg = lw |- Regwrite

[MemWwrite

RegWrite = add + sub + ori + Iw “OR"logic | npCsel
e

MemWrite =sw “AND” logic

E?FFFF’F

Jump.
nPCsel =beq :: it‘gp .

. ctr
Jump = jump = ALUCI:H
ExtOp =lw +sw

ALUctr{0] =sub +beq (assume ALUctris 0 ADD, 01: SUB, 10: OR)
ALUetr[1] =or

where,

rtype = ~0p; ® ~0p, * ~0p; * ~0p, * ~0p; * ~0p,,
ori =~0ps®~0p,* Op;* 0p,* ~0p,* 0P,
Iw = ops®~op,®~op;*~op,* op,* op,
SW = 0ps®~0ps® 0p3*~0p,* Op;* 0p,
beq =~ops®~op,®~0p;® 0p,* ~op,® ~0p,
Jjump = ~0ps ® ~0p, * ~0p;® ~0p,* 0p, * ~0p,

Omigosh omigosh,
do you know what
this means?

add = rtype ® func; ® ~func, * ~func; * ~func, * ~func, * ~func,
sub = rtype ® func; ® ~func, * ~func; * ~func, * func, * ~func,

Processor Performance
= Can we estimate the clock rate (frequency) of our
single-cycle processor? We know:

= 1 cycle per instruction
= 1w is the most demanding instruction.
= Assume these delays for major pieces of the datapath:
* Instr. Mem,AI.U Data Mem : 2ns each, regfile Ins
. sti quires:2+1+2+2+1=8ns

+ =125 MHz
= What can we do to improve clock rate?

= Will this improve performance as well?
= We want increases in clock rate to result in programs

2 , executing quicker.

Review: Single cycle datapath

. Sstepstodesugnaprooessor

1 ion set = datap q
2. Selecrsetof‘ h & establish clock methodology
3. ble datapath ting the requi
4. Analyze implementation of each instruction to defermine setting of

conivol points that effects the register transfer.
5. Assemble the control logic

Processor

= Control is the hard part ot
. MIPS makes that easier

Memory|

Instructions same size
= Source registers always in same place Output

= Immediates same size,
= Operations always on

#74 —

Call home, we’ve made HW/SW contact!

Assembly La

Program (i

Machine Lar
Program (

Machine
Interpretation

Hardware Architec
(e.g., block diag

Architecture
Implementation

Logic Circuit De
, (Circuit Sche

Gotta Do Laundry

= Ann, Brian, Cathy, Dave
each have one load of clothes to @@@
wash, dry, fold, and put away
= Washer takes 30 minutes iﬁi
= Dryer takes 30 minutes éﬁ’
= “Folder” takes 30 minutes %F
o “Stasher” takes 30 minutes fo put K

g) clothes info drawers

Sequential Laundry

6PM 7 8 9 10 11 12 1 2AM

I]]] I] I I I]] I I] I |
30'30'30'30'30'30'30'30'30'30'30'30'30'30'30'30'

-
2 5@%;& Time
k| B WL A5 A

LIS .
o g Bs4
g = Sequential laundry takes

8 hours for 4 loads

47 -

Pipelined Laundry

6PM 7 8 9 10 11 12 1 2AM

= | .
3030 30 30 30 30 30 Time

&

x>0 0 -

B 09 &4

= Pipelined laundry takes
3.5 hours for 4 loads!

=0 Q=0

General Definitions

= Latency: time to completely execute a certain
task
= for example, fime to read a sector from disk is disk
access time or disk latency
= Throughput: amount of work that can be
done over a period of time

47 -

Pipelining Lessons (1/2)
6PM 7 8 9 = Pipelining doesn’t help
T e T R etatof catee
a 3030 30 30 30 30 30 wos:ocd
i I = Multiple tasks operating
simultaneously using
different resources

= Potential speedup =
Number pipe stages

= Time to “fill” pipeline and
time fo “drain” it reduces

speedup:
2.3X v. 4X in this example

#74 -

Pipelining Lessons (2/2)

6PM 7 8 9

= Suppose new Washer
Time takes 20 minlnes,

;— 0 30 30 30 new Stasher takes 20

s | 5 minutes. How much

k & [faster is pipeline?
=T = Pipeline rate limited

? o A by slowest pipeline

da D A5 &A stage

S = Unbalanced lengths

r of pipe stages

reduces speedup

R

Garda,

Steps in Executing MIPS

1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers
3) Exec:
Mem-ref: Calculate Address
Arith-log: Perform Operation
4) Mem:
Load: Read Data from Memory
Store: Write Data to Memory

5) WB: Write Data Back to Register

474 -

Pipelined Execution Representation

_Time
[IFtchIDcd [ExecMem] WB |
[iIFtchIDcd [ExecIMem] WB |
[IFtchlDcd [ExecIMem] wB |
[IFtchDcd JExec|Mem] WB |
[1IFtchlDcd [ExecMem] wB |
[IFtchDcd [Exec[Mem] WB |
= Every instruction must take same number of

steps, also called pipeline “stages”, so some will
@ go idle sometimes

Garda,

Review: Datapath for MIPS
[

|

[Z]
c rd S |—
Q s k] >
g g s 2 g5 H
£Eg rt = 8 £
2E g
1. Instruction 2. Decode/ 5. Write

3. Execute 4. Memon
Fetch Register Read Y Back

= Use datapath figure to represent: pipeline
[iIFtchlDcd [ExecfMem] WB |

Graphical Pipeline Representation

(In Reg, right half highlight read, left half write)
Time (ploqk cycles)

Load
Add
Store

Sub

&DQ"O T, NS -
i

Example

= Suppose 2 ns for memory access, 2 ns for
ALU operation, and 1 ns for register file read
or write; compute instruction rate

= Nonpipelined Execution:

1w : IF + Read Reg + ALU + Memory + Write Reg =

2+1+2+2+1=8ns

add: IF + Read Reg + ALU + Write Reg
=2+1+2+1=6ns
{recall 8ns for single-cycle processor)
= Pipelined Execution:
= Max(IF,Read Reg,ALU,Memory,Write Reg) = 2 ns

o

o

Pipeline Hazard: Matching socks in later load

6PM 7 8 9 10 11 12 1 2AM

T Time
A

© A

g A
; ﬁgiﬁ?ﬁ

Q A depends on D; stall since folder tied up

Garda,

Problems for Pipelining CPUs

= Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle
= Structural hazards: HW cannot support some
combination of instructions (single person to fold and
put clothes away)
= Control hazards: Pipelining of branches causes later
instruction fetches fo wait for the result of the branch
= Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)
= These might result in pipeline stalls or “bubbles”
in the pipeline.

Structural Hazard #1: Single Memory (1/2)

Time (clock cycles)

| ™~ _

" |Loaa CHELER DR

t |Instr1 £ s Reg

- Instr 2 i o5 e

o — R

’ Instr 3 (el E =

d *Instr 4 IE'
e

@Read same memory twice in same clock cycle

Structural Hazard #2: Registers (1/2)

Time (clock cycles)

sSwW

S 0 S5 —

Instr 1
Instr 2

Instr 3

Instr 4

= 0oa=0

@ we read and write to registers simultaneously?

Peer Instruction
1) Thanks to pipelining, | have reduced the time it 12
took me to wash my one shirt. ;i E’Fr'
2) Longer pipelines are u% a win (since lesswork |c) TF
per stage & a faster clock). d) TT

Structural Hazard #1: Single Memory (2/2)

= Solution:
= infeasible and inefficient to create second memory
= (We'll learn about this more next week)
= so simulate this by having two Level 1 Caches (a
temporary smaller [of usually most recently used]
copy of memory)

= have both an L1 Instruction Cache and
an L1 Data Cache

= need more complex hardware to control when
both caches miss

#74 -

Structural Hazard #2: Registers (2/2)

= Two different solutions have been used:
1) RegFile access is VERY fast: takes less than half the
time of ALU stage
+ Wite to Registers during first half of each clock cycle
- Read from Registers during second half of each clock
cycle
2) Build RegFile with independent read and write
poris
= Result: can perform Read and Write during
same clock cycle

#74 -

Things o Remember

= Optimal Pipeline
= Each stage is executing part of an instruction each
clock cycle.
= One instruction finishes during each clock cycle.
= On average, execute far more quickly.
= What makes this work?
= Similarities between instructions allow us to use
same stages for all instructions (generally).
= Each stage takes about the same amount of time
as all others: little wasted time.

474 -

