
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures 

 Lecture 25 
CPU design (of a single-cycle CPU) 

 2010-03-29 

Intel is prototyping circuits that 
operate at low voltages to save 
power, and if/when errors occur, 
backing up and restarting the 
calculation at a higher voltage… 

Lecturer SOE 
Dan Garcia 

technologyreview.com/computing/24843/ 

Hello to  
Valon Mehmeti 

from Macedonia! 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (2) Garcia, Spring 2010 © UCB 

Review 

  CPU design involves Datapath, Control 
  Datapath in MIPS involves 5 CPU stages 

1.  Instruction Fetch 
2.  Instruction Decode & Register Read 
3.  ALU (Execute) 
4.  Memory 
5.  Register Write 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (3) Garcia, Spring 2010 © UCB 

Datapath Summary 

  The datapath based on data transfers 
required to perform instructions 

  A controller causes the right transfers to 
happen  

PC
"

in
st

ru
ct

io
n"

m
em

or
y"

+4"

rt"
rs"
rd"

re
gi

st
er

s"

D
at

a"
m

em
or

y"

imm"

ALU	



Controller"
opcode, funct"

CS61C L25 CPU Design : Designing a Single-Cycle CPU (4) Garcia, Spring 2010 © UCB 

How to Design a Processor: step-by-step 

1.  Analyze instruction set architecture (ISA)  
⇒ datapath requirements 

1.  meaning of each instruction is given by the register transfers 
2.  datapath must include storage element for ISA registers 
3.  datapath must support each register transfer 

2.  Select set of datapath components and establish 
clocking methodology 

3.  Assemble datapath meeting requirements 
4.  Analyze implementation of each instruction to determine 

setting of control points that effects the register transfer. 
5.  Assemble the control logic 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (5) Garcia, Spring 2010 © UCB 

  All MIPS instructions are 32 bits long.  3 formats: 

  R-type 

  I-type 

  J-type 

  The different fields are: 
  op: operation (“opcode”) of the instruction 
  rs, rt, rd: the source and destination register specifiers 
  shamt: shift amount 
  funct: selects the variant of the operation in the “op” field 
  address / immediate: address offset or immediate value 
  target address: target address of jump instruction  

op	

 target address	


0	

26	

31	



6 bits	

 26 bits	



op	

 rs	

 rt	

 rd	

 shamt	

 funct	


0	

6	

11	

16	

21	

26	

31	



6 bits	

 6 bits	

5 bits	

5 bits	

5 bits	

5 bits	



op	

 rs	

 rt	

 address/immediate	


0	

16	

21	

26	

31	



6 bits	

 16 bits	

5 bits	

5 bits	



Review: The MIPS Instruction Formats 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (6) Garcia, Spring 2010 © UCB 

  ADDU and SUBU 
  addu rd,rs,rt 
  subu rd,rs,rt 

  OR Immediate: 
  ori rt,rs,imm16 

  LOAD and  
STORE Word 
  lw rt,rs,imm16 
  sw rt,rs,imm16 

  BRANCH: 
  beq rs,rt,imm16 

op	

 rs	

 rt	

 rd	

 shamt	

 funct	


0	

6	

11	

16	

21	

26	

31	



6 bits	

 6 bits	

5 bits	

5 bits	

5 bits	

5 bits	



op	

 rs	

 rt	

 immediate	


0	

16	

21	

26	

31	



6 bits	

 16 bits	

5 bits	

5 bits	



op	

 rs	

 rt	

 immediate	


0	

16	

21	

26	

31	



6 bits	

 16 bits	

5 bits	

5 bits	



op	

 rs	

 rt	

 immediate	


0	

16	

21	

26	

31	



6 bits	

 16 bits	

5 bits	

5 bits	



Step 1a: The MIPS-lite Subset for today 



CS61C L25 CPU Design : Designing a Single-Cycle CPU (7) Garcia, Spring 2010 © UCB 

  RTL gives the meaning of the instructions 

  All start by fetching the instruction 

{op , rs , rt , rd , shamt , funct} ← MEM[ PC ]	



{op , rs , rt ,   Imm16} ← MEM[ PC ]	



inst 	

Register Transfers	


ADDU 	

R[rd] ← R[rs] + R[rt]; 	

PC ← PC + 4	


SUBU 	

R[rd] ← R[rs] – R[rt]; 	

PC ← PC + 4	


ORI 	

R[rt] ← R[rs] | zero_ext(Imm16); 	

PC ← PC + 4	


LOAD 	

R[rt] ← MEM[ R[rs] + sign_ext(Imm16)]; PC ← PC + 4	


STORE 	

MEM[ R[rs] + sign_ext(Imm16) ] ← R[rt]; PC ← PC + 4	


BEQ   if ( R[rs] == R[rt] ) then ���
                  PC ← PC + 4 + (sign_ext(Imm16) || 00)���
           else PC ← PC + 4	



Register Transfer Language (RTL) 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (8) Garcia, Spring 2010 © UCB 

Step 1: Requirements of the Instruction Set 

  Memory (MEM) 
  instructions & data (will use one for each) 

  Registers (R: 32 x 32) 
  read RS 
  read RT 
  Write RT or RD 

  PC 
  Extender (sign/zero extend) 
  Add/Sub/OR unit for operation on register(s) or extended 

immediate 
  Add 4 (+ maybe extended immediate) to PC 
  Compare registers? 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (9) Garcia, Spring 2010 © UCB 

Step 2: Components of the Datapath 

  Combinational Elements 
  Storage Elements 

  Clocking methodology 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (10) Garcia, Spring 2010 © UCB 

Combinational Logic Elements (Building Blocks) 

  Adder 

  MUX 

  ALU 

32	



32	



A	



B	


32	

 Sum	



CarryOut	



32	



32	



A	



B	


32	

 Result	



OP	



32	

A	



B	

 32	



Y	

32	



Select	



A
dder	



M
U

X
	



A
LU
	



CarryIn	



CS61C L25 CPU Design : Designing a Single-Cycle CPU (11) Garcia, Spring 2010 © UCB 

ALU Needs for MIPS-lite + Rest of MIPS 

  Addition, subtraction, logical OR, ==: 
ADDU   R[rd] = R[rs] + R[rt]; ... 
SUBU   R[rd] = R[rs] – R[rt]; ...   
ORI   R[rt] = R[rs] | zero_ext
(Imm16)...  

BEQ   if ( R[rs] == R[rt] )...  

  Test to see if output == 0 for any ALU 
operation gives == test. How? 

  P&H also adds AND,  
Set Less Than (1 if A < B, 0 otherwise)  

  ALU follows chap 5 
CS61C L25 CPU Design : Designing a Single-Cycle CPU (12) Garcia, Spring 2010 © UCB 

Administrivia 

  Administrivia? 



CS61C L25 CPU Design : Designing a Single-Cycle CPU (13) Garcia, Spring 2010 © UCB 

What Hardware Is Needed? (1/2) 

  PC: a register which keeps track of memory 
addr of the next instruction 

  General Purpose Registers 
  used in Stages 2 (Read) and 5 (Write) 
  MIPS has 32 of these 

  Memory 
  used in Stages 1 (Fetch) and 4 (R/W) 
  cache system makes these two stages as fast as 

the others, on average 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (14) Garcia, Spring 2010 © UCB 

What Hardware Is Needed? (2/2) 
  ALU 

  used in Stage 3 
  something that performs all necessary functions: 

arithmetic, logicals, etc. 
  we’ll design details later 

  Miscellaneous Registers 
  In implementations with only one stage per clock 

cycle, registers are inserted between stages to hold 
intermediate data and control signals as they travels 
from stage to stage. 

  Note: Register is a general purpose term meaning 
something that stores bits.  Not all registers are in the 
“register file”. 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (15) Garcia, Spring 2010 © UCB 

Storage Element: Idealized Memory 
  Memory (idealized) 

  One input bus: Data In 
  One output bus: Data Out 

  Memory word is found by: 
  Address selects the word to put on Data Out 
  Write Enable = 1: address selects the memory 

word to be written via the Data In bus 

  Clock input (CLK)  
  The CLK input is a factor ONLY during write operation 
  During read operation, behaves as a combinational 

logic block: 
  Address valid ⇒ Data Out valid after “access time.” 

Clk	



Data In	



Write Enable	



32	

 32	


DataOut	



Address	



CS61C L25 CPU Design : Designing a Single-Cycle CPU (16) Garcia, Spring 2010 © UCB 

Storage Element: Register (Building Block) 

  Similar to D Flip Flop except 
  N-bit input and output 
  Write Enable input 

  Write Enable: 
  negated (or deasserted) (0):  

Data Out will not change 
  asserted (1):  

Data Out will become Data In on positive edge of 
clock 

clk	



Data In	



Write Enable	



N	

 N	



Data Out	



CS61C L25 CPU Design : Designing a Single-Cycle CPU (17) Garcia, Spring 2010 © UCB 

Storage Element: Register File 
  Register File consists of 32 registers: 

  Two 32-bit output busses: 
    busA and busB 
  One 32-bit input bus: busW 

  Register is selected by: 
  RA (number) selects the register to put on busA (data) 
  RB (number) selects the register to put on busB (data) 
  RW (number) selects the register to be  written 

via busW (data) when Write Enable is 1 

  Clock input (clk)  
  The clk input is a factor ONLY during write operation 
  During read operation, behaves as a combinational logic block: 

  RA or RB valid ⇒ busA or busB valid after “access time.” 

Clk	



busW	



Write Enable	



32	


32	



busA	



32	


busB	



5	

 5	

 5	


RW	

RA	

RB	



32 32-bit	


Registers	



CS61C L25 CPU Design : Designing a Single-Cycle CPU (18) Garcia, Spring 2010 © UCB 

Step 3: Assemble DataPath meeting requirements 

  Register Transfer Requirements  
 ⇒  Datapath Assembly 

  Instruction Fetch 
  Read Operands and Execute Operation 



CS61C L25 CPU Design : Designing a Single-Cycle CPU (19) Garcia, Spring 2010 © UCB 

3a: Overview of the Instruction Fetch Unit 

  The common RTL operations 
  Fetch the Instruction: mem[PC] 
  Update the program counter: 

  Sequential Code: PC ← PC + 4  
  Branch and Jump:   PC ← “something else” 

32	



Instruction Word	

Address	


Instruction	



Memory	



PC	

clk	



Next Address	


Logic	



CS61C L25 CPU Design : Designing a Single-Cycle CPU (20) Garcia, Spring 2010 © UCB 

3b: Add & Subtract 
  R[rd] = R[rs] op R[rt] (addu rd,rs,rt) 

  Ra, Rb, and Rw come from instruction’s Rs, Rt, and 
Rd fields 

  ALUctr and RegWr: control logic after decoding the 
instruction 

  … Already defined the register file & ALU              

32	


Result	



ALUctr	



clk	



busW	



RegWr	



32	


32	



busA	



32	


busB	



5	

 5	

 5	



Rw	

Ra	

Rb	


32  32-bit	


Registers	



Rs	

 Rt	

Rd	



A
LU	



op	

 rs	

 rt	

 rd	

 shamt	

 funct	


0	

6	

11	

16	

21	

26	

31	



6 bits	

 6 bits	

5 bits	

5 bits	

5 bits	

5 bits	



CS61C L25 CPU Design : Designing a Single-Cycle CPU (21) Garcia, Spring 2010 © UCB 

1)  We should use the main ALU to 
compute PC=PC+4 

2)  The ALU is inactive for memory reads or 
writes. 

Peer Instruction 

   12 
a) FF 
b) FT 
c) TF 
d) TT 

CS61C L25 CPU Design : Designing a Single-Cycle CPU (22) Garcia, Spring 2010 © UCB 

  1. Analyze instruction set architecture (ISA)  
⇒ datapath requirements 
  meaning of each instruction is given by the register transfers 
  datapath must include storage element for ISA registers 
  datapath must support each register transfer 

  2. Select set of datapath components and establish 
clocking methodology 

  3. Assemble datapath meeting requirements 

  4. Analyze implementation of each instruction to 
determine setting of control points that effects the 
register transfer. 

        5. Assemble the control logic (hard part!) 

How to Design a Processor: step-by-step 


