
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 25
CPU design (of a single-cycle CPU)

 2010-03-29

Intel is prototyping circuits that
operate at low voltages to save
power, and if/when errors occur,
backing up and restarting the
calculation at a higher voltage…

Lecturer SOE
Dan Garcia

technologyreview.com/computing/24843/

Hello to
Valon Mehmeti

from Macedonia!

CS61C L25 CPU Design : Designing a Single-Cycle CPU (2) Garcia, Spring 2010 © UCB

Review

  CPU design involves Datapath, Control
  Datapath in MIPS involves 5 CPU stages

1.  Instruction Fetch
2.  Instruction Decode & Register Read
3.  ALU (Execute)
4.  Memory
5.  Register Write

CS61C L25 CPU Design : Designing a Single-Cycle CPU (3) Garcia, Spring 2010 © UCB

Datapath Summary

  The datapath based on data transfers
required to perform instructions

  A controller causes the right transfers to
happen

PC
"

in
st

ru
ct

io
n"

m
em

or
y"

+4"

rt"
rs"
rd"

re
gi

st
er

s"

D
at

a"
m

em
or

y"

imm"

ALU	

Controller"
opcode, funct"

CS61C L25 CPU Design : Designing a Single-Cycle CPU (4) Garcia, Spring 2010 © UCB

How to Design a Processor: step-by-step

1.  Analyze instruction set architecture (ISA)
⇒ datapath requirements

1.  meaning of each instruction is given by the register transfers
2.  datapath must include storage element for ISA registers
3.  datapath must support each register transfer

2.  Select set of datapath components and establish
clocking methodology

3.  Assemble datapath meeting requirements
4.  Analyze implementation of each instruction to determine

setting of control points that effects the register transfer.
5.  Assemble the control logic

CS61C L25 CPU Design : Designing a Single-Cycle CPU (5) Garcia, Spring 2010 © UCB

  All MIPS instructions are 32 bits long. 3 formats:

  R-type

  I-type

  J-type

  The different fields are:
  op: operation (“opcode”) of the instruction
  rs, rt, rd: the source and destination register specifiers
  shamt: shift amount
  funct: selects the variant of the operation in the “op” field
  address / immediate: address offset or immediate value
  target address: target address of jump instruction

op	
 target address	

0	
26	
31	

6 bits	
 26 bits	

op	
 rs	
 rt	
 rd	
 shamt	
 funct	

0	
6	
11	
16	
21	
26	
31	

6 bits	
 6 bits	
5 bits	
5 bits	
5 bits	
5 bits	

op	
 rs	
 rt	
 address/immediate	

0	
16	
21	
26	
31	

6 bits	
 16 bits	
5 bits	
5 bits	

Review: The MIPS Instruction Formats

CS61C L25 CPU Design : Designing a Single-Cycle CPU (6) Garcia, Spring 2010 © UCB

  ADDU and SUBU
  addu rd,rs,rt
  subu rd,rs,rt

  OR Immediate:
  ori rt,rs,imm16

  LOAD and
STORE Word
  lw rt,rs,imm16
  sw rt,rs,imm16

  BRANCH:
  beq rs,rt,imm16

op	
 rs	
 rt	
 rd	
 shamt	
 funct	

0	
6	
11	
16	
21	
26	
31	

6 bits	
 6 bits	
5 bits	
5 bits	
5 bits	
5 bits	

op	
 rs	
 rt	
 immediate	

0	
16	
21	
26	
31	

6 bits	
 16 bits	
5 bits	
5 bits	

op	
 rs	
 rt	
 immediate	

0	
16	
21	
26	
31	

6 bits	
 16 bits	
5 bits	
5 bits	

op	
 rs	
 rt	
 immediate	

0	
16	
21	
26	
31	

6 bits	
 16 bits	
5 bits	
5 bits	

Step 1a: The MIPS-lite Subset for today

CS61C L25 CPU Design : Designing a Single-Cycle CPU (7) Garcia, Spring 2010 © UCB

  RTL gives the meaning of the instructions

  All start by fetching the instruction

{op , rs , rt , rd , shamt , funct} ← MEM[PC]	

{op , rs , rt , Imm16} ← MEM[PC]	

inst 	
Register Transfers	

ADDU 	
R[rd] ← R[rs] + R[rt]; 	
PC ← PC + 4	

SUBU 	
R[rd] ← R[rs] – R[rt]; 	
PC ← PC + 4	

ORI 	
R[rt] ← R[rs] | zero_ext(Imm16); 	
PC ← PC + 4	

LOAD 	
R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4	

STORE 	
MEM[R[rs] + sign_ext(Imm16)] ← R[rt]; PC ← PC + 4	

BEQ if (R[rs] == R[rt]) then ���
 PC ← PC + 4 + (sign_ext(Imm16) || 00)���
 else PC ← PC + 4	

Register Transfer Language (RTL)

CS61C L25 CPU Design : Designing a Single-Cycle CPU (8) Garcia, Spring 2010 © UCB

Step 1: Requirements of the Instruction Set

  Memory (MEM)
  instructions & data (will use one for each)

  Registers (R: 32 x 32)
  read RS
  read RT
  Write RT or RD

  PC
  Extender (sign/zero extend)
  Add/Sub/OR unit for operation on register(s) or extended

immediate
  Add 4 (+ maybe extended immediate) to PC
  Compare registers?

CS61C L25 CPU Design : Designing a Single-Cycle CPU (9) Garcia, Spring 2010 © UCB

Step 2: Components of the Datapath

  Combinational Elements
  Storage Elements

  Clocking methodology

CS61C L25 CPU Design : Designing a Single-Cycle CPU (10) Garcia, Spring 2010 © UCB

Combinational Logic Elements (Building Blocks)

  Adder

  MUX

  ALU

32	

32	

A	

B	

32	
 Sum	

CarryOut	

32	

32	

A	

B	

32	
 Result	

OP	

32	
A	

B	
 32	

Y	
32	

Select	

A
dder	

M
U

X
	

A
LU
	

CarryIn	

CS61C L25 CPU Design : Designing a Single-Cycle CPU (11) Garcia, Spring 2010 © UCB

ALU Needs for MIPS-lite + Rest of MIPS

  Addition, subtraction, logical OR, ==:
ADDU R[rd] = R[rs] + R[rt]; ...
SUBU R[rd] = R[rs] – R[rt]; ...
ORI R[rt] = R[rs] | zero_ext
(Imm16)...

BEQ if (R[rs] == R[rt])...

  Test to see if output == 0 for any ALU
operation gives == test. How?

  P&H also adds AND,
Set Less Than (1 if A < B, 0 otherwise)

  ALU follows chap 5
CS61C L25 CPU Design : Designing a Single-Cycle CPU (12) Garcia, Spring 2010 © UCB

Administrivia

  Administrivia?

CS61C L25 CPU Design : Designing a Single-Cycle CPU (13) Garcia, Spring 2010 © UCB

What Hardware Is Needed? (1/2)

  PC: a register which keeps track of memory
addr of the next instruction

  General Purpose Registers
  used in Stages 2 (Read) and 5 (Write)
  MIPS has 32 of these

  Memory
  used in Stages 1 (Fetch) and 4 (R/W)
  cache system makes these two stages as fast as

the others, on average

CS61C L25 CPU Design : Designing a Single-Cycle CPU (14) Garcia, Spring 2010 © UCB

What Hardware Is Needed? (2/2)
  ALU

  used in Stage 3
  something that performs all necessary functions:

arithmetic, logicals, etc.
  we’ll design details later

  Miscellaneous Registers
  In implementations with only one stage per clock

cycle, registers are inserted between stages to hold
intermediate data and control signals as they travels
from stage to stage.

  Note: Register is a general purpose term meaning
something that stores bits. Not all registers are in the
“register file”.

CS61C L25 CPU Design : Designing a Single-Cycle CPU (15) Garcia, Spring 2010 © UCB

Storage Element: Idealized Memory
  Memory (idealized)

  One input bus: Data In
  One output bus: Data Out

  Memory word is found by:
  Address selects the word to put on Data Out
  Write Enable = 1: address selects the memory

word to be written via the Data In bus

  Clock input (CLK)
  The CLK input is a factor ONLY during write operation
  During read operation, behaves as a combinational

logic block:
  Address valid ⇒ Data Out valid after “access time.”

Clk	

Data In	

Write Enable	

32	
 32	

DataOut	

Address	

CS61C L25 CPU Design : Designing a Single-Cycle CPU (16) Garcia, Spring 2010 © UCB

Storage Element: Register (Building Block)

  Similar to D Flip Flop except
  N-bit input and output
  Write Enable input

  Write Enable:
  negated (or deasserted) (0):

Data Out will not change
  asserted (1):

Data Out will become Data In on positive edge of
clock

clk	

Data In	

Write Enable	

N	
 N	

Data Out	

CS61C L25 CPU Design : Designing a Single-Cycle CPU (17) Garcia, Spring 2010 © UCB

Storage Element: Register File
  Register File consists of 32 registers:

  Two 32-bit output busses:
 busA and busB
  One 32-bit input bus: busW

  Register is selected by:
  RA (number) selects the register to put on busA (data)
  RB (number) selects the register to put on busB (data)
  RW (number) selects the register to be written

via busW (data) when Write Enable is 1

  Clock input (clk)
  The clk input is a factor ONLY during write operation
  During read operation, behaves as a combinational logic block:

  RA or RB valid ⇒ busA or busB valid after “access time.”

Clk	

busW	

Write Enable	

32	

32	

busA	

32	

busB	

5	
 5	
 5	

RW	
RA	
RB	

32 32-bit	

Registers	

CS61C L25 CPU Design : Designing a Single-Cycle CPU (18) Garcia, Spring 2010 © UCB

Step 3: Assemble DataPath meeting requirements

  Register Transfer Requirements
 ⇒ Datapath Assembly

  Instruction Fetch
  Read Operands and Execute Operation

CS61C L25 CPU Design : Designing a Single-Cycle CPU (19) Garcia, Spring 2010 © UCB

3a: Overview of the Instruction Fetch Unit

  The common RTL operations
  Fetch the Instruction: mem[PC]
  Update the program counter:

  Sequential Code: PC ← PC + 4
  Branch and Jump: PC ← “something else”

32	

Instruction Word	
Address	

Instruction	

Memory	

PC	
clk	

Next Address	

Logic	

CS61C L25 CPU Design : Designing a Single-Cycle CPU (20) Garcia, Spring 2010 © UCB

3b: Add & Subtract
  R[rd] = R[rs] op R[rt] (addu rd,rs,rt)

  Ra, Rb, and Rw come from instruction’s Rs, Rt, and
Rd fields

  ALUctr and RegWr: control logic after decoding the
instruction

  … Already defined the register file & ALU

32	

Result	

ALUctr	

clk	

busW	

RegWr	

32	

32	

busA	

32	

busB	

5	
 5	
 5	

Rw	
Ra	
Rb	

32 32-bit	

Registers	

Rs	
 Rt	
Rd	

A
LU	

op	
 rs	
 rt	
 rd	
 shamt	
 funct	

0	
6	
11	
16	
21	
26	
31	

6 bits	
 6 bits	
5 bits	
5 bits	
5 bits	
5 bits	

CS61C L25 CPU Design : Designing a Single-Cycle CPU (21) Garcia, Spring 2010 © UCB

1)  We should use the main ALU to
compute PC=PC+4

2)  The ALU is inactive for memory reads or
writes.

Peer Instruction

 12
a) FF
b) FT
c) TF
d) TT

CS61C L25 CPU Design : Designing a Single-Cycle CPU (22) Garcia, Spring 2010 © UCB

  1. Analyze instruction set architecture (ISA)
⇒ datapath requirements
  meaning of each instruction is given by the register transfers
  datapath must include storage element for ISA registers
  datapath must support each register transfer

  2. Select set of datapath components and establish
clocking methodology

  3. Assemble datapath meeting requirements

  4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.

  5. Assemble the control logic (hard part!)

How to Design a Processor: step-by-step

