Lecture 23 - Combinational Logic Blocks

2010-03-17

Lecturer SOE Dan Garcia

www. cs . berkeley.edu/~ddgarcia

National Broadband Plan \Rightarrow
The FCC delivered their plan
to Congress yesterday, "with an ambitious agenda to connect by 2020 all corners of the nation \&transform the economy and society with the communications network of the future". 100 Million households @ $100 \mathrm{Mbit} / \mathrm{s}$!! The Obama administration put $\$ 7.2$ billion toward this...

Review

- Use this table and techniques we learned to transform from 1 to another

Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

Data Multiplexor (here 2-to-1, n-bit-wide)

Cal \qquad

N instances of 1-bit-wide mux

How do we build a 1-bit-wide max?

$$
\bar{s} a+s b
$$

Cal \qquad

4-to-1 Multiplexor?
$a b c d$ How many rows in TT?

Cal

$$
e=\overline{s_{1}} \overline{s_{0}} a+\overline{s_{1}} s_{0} b+s_{1} \overline{s_{0}} c+s_{1} s_{0} d
$$

Is there any other way to do it?

Administrivia

- Midterm discussion, moving forward
- If you want a regrade for your midterm, staple a paper with your explanation (clearly indicating on what question you want more points) to your exam and turn it in to your TA in lab this week
- We'll regrade the exam and your score MIGHT go down...

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when $S=00, R=A+B$
when $S=01, R=A-B$
when $S=10, R=A$ and B
when $S=11, R=A$ or B

Our simple ALU

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter - One-bit adder LSB...

$$
\begin{array}{ccc|c|}
& & \\
\mathrm{a}_{3} & \mathrm{a}_{2} & \mathrm{a}_{1} & \mathrm{a}_{0} \\
\mathrm{~b}_{3} & \mathrm{~b}_{2} & \mathrm{~b}_{1} & \mathrm{~b}_{0} \\
\hline \mathrm{~s}_{3} & \mathrm{~s}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{0}
\end{array} \quad \begin{array}{cc|cc}
\mathrm{a}_{0} & \mathrm{~b}_{0} & \mathrm{~s}_{0} & \mathrm{c}_{1} \\
\hline \hline 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
& & & \\
& s_{0}= \\
c_{1}=
\end{array}
$$

Adder/Subtracter - One-bit adder (1/2)...

Adder/Subtracter - One-bit adder (2/2)...

$$
\begin{aligned}
s_{i} & =\operatorname{XOR}\left(a_{i}, b_{i}, c_{i}\right) \\
c_{i+1} & =\operatorname{MAJ}\left(a_{i}, b_{i}, c_{i}\right)=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i}
\end{aligned}
$$

N 1-bit adders $\Rightarrow 1 \mathrm{~N}$-bit adder

What about overflow? Overflow = c_{n} ?

What about overflow?

- Consider a 2-bit signed \# \& overflow:
$\cdot 10=-2+-2$ or -1
$\cdot 11=-1+-2$ only
$\cdot 100=0$ NOTHING!
$\cdot 00=1+1$ only
- Highest adder

- $\mathrm{C}_{1}=$ Carry-in $=\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{2}=$ Carry-out $=\mathrm{C}_{\text {out }}$
- No $\mathrm{C}_{\text {out }}$ or $\mathrm{C}_{\mathrm{in}} \Rightarrow$ NO overflow!

What $\cdot \mathrm{C}_{\text {in }}$, and $\mathrm{C}_{\text {out }} \Rightarrow$ NO overflow!
op? $\cdot C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both >0, overflow!

- $C_{\text {out }}$, but no $C_{\text {in }} \Rightarrow A, B$ both <0, overflow!

What about overflow?

- Consider a 2-bit signed \# \& overflow:

$$
\begin{aligned}
& 10=-2 \\
& 11=-1 \\
& 00=0 \\
& 01=1
\end{aligned}
$$

- Overflows when...

$\cdot C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both >0, overflow!
$\cdot C_{\text {out }}$, but no $C_{\text {in }} \Rightarrow A, B$ both <0, overflow!

overflow $=c_{n}$ XOR c_{n-1}

Extremely Clever Subtractor

Peer Instruction

1) Truth table for mux with 4-bits of signals has 2^{4} rows
2) We could cascade \mathbf{N} 1-bit shifters to make 1 N -bit shifter for sll, srl

Peer Instruction Answer

1) Truth table for mux with 4-bits of signals controls 16 inputs, for a total of 20 inputs, so truth table is $\mathbf{2}^{\mathbf{2 0}}$ rows...FALSE
2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl ... TRUE
3) Truth table for mux with 4-bits of signals is 2^{4} rows long
4) We could cascade N 1-bit shifters
 to make $1 \mathbf{N}$-bit shifter for sll, srl

"And In conclusion..."

- Use muxes to select among input
- S input bits selects 2^{S} inputs
- Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
- Coupled with basic block elements
- N -bit adder-subtractor done using N 1bit adders with XOR gates on input
- XOR serves as conditional inverter

