inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures

Lecture 23 – Combinational Logic Blocks

2010-03-17

Hello to Casey Holgado listening from Oklahoma State!

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

National Broadband Plan \Rightarrow

broadband.gov

The FCC delivered their plan

to Congress yesterday, "with an ambitious agenda to connect by 2020 all corners of the nation &transform the economy and society with the communications network of the future". 100 Million households @ 100 Mbit/s!! The Obama administration put \$7.2 billion toward this...

Garcia, Spring 2010 © UCB

Review

• Use this table and techniques we learned to transform from 1 to another

Garcia, Spring 2010 © UCB

CS61C L23 Combinational Logic Blocks (2)

Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

Data Multiplexor (here 2-to-1, n-bit-wide)

N instances of 1-bit-wide mux

How do we build a 1-bit-wide mux?

Garcia, Spring 2010 © UCB

4-to-1 Multiplexor?

Cal

 $e = \overline{s_1}\overline{s_0}a + \overline{s_1}s_0b + s_1\overline{s_0}c + s_1s_0d$

Garcia, Spring 2010 © UCB

CS61C L23 Combinational Logic Blocks (7)

Is there any other way to do it?

CS61C L23 Combinational Logic Blocks (8)

Garcia, Spring 2010 © UCB

Administrivia

- Midterm discussion, moving forward
- If you want a regrade for your midterm, staple a paper with your explanation (clearly indicating on what question you want more points) to your exam and turn it in to your TA in lab this week
 - We'll regrade the exam and your score MIGHT go down...

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when S=00, R=A+B when S=01, R=A-B when S=10, R=A AND B when S=11, R=A OR B

Our simple ALU

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter – One-bit adder LSB...

	a_3	a_2	a_1	a_0	
+	b_3	b_2	b_1	b_0	
	S 3	s_2	s_1	s ₀	

Adder/Subtracter – One-bit adder (1/2)...

					a_i	b_i	\mathbf{c}_i	Si	c_{i+1}
					0	0	0	0	0
	0	0	0		0	0	1	1	0
		a_2				1			
+	b_3	b_2	b_1	b_0	0	1	1	0	1
	S 3	s ₂	S ₁	S ₀		0			
	0	2	1		1	0	1	0	1
					1	1	0	0	
					1	1	1	1	1

$$s_i =$$

$$c_{i+1} =$$

CS61C L23 Combinational Logic Blocks (14)

Adder/Subtracter – One-bit adder (2/2)...

$$\begin{array}{ll} s_i &= \operatorname{XOR}(a_i, b_i, c_i) \\ c_{i+1} &= \operatorname{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i \end{array}$$

N 1-bit adders \Rightarrow 1 N-bit adder

What about overflow? **Overflow** = c_n ?

Garcia, Spring 2010 © UCB

CS61C L23 Combinational Logic Blocks (16)

What about overflow? Consider a 2-bit signed # & overflow:

 $\cdot 10 = -2 + -2 \text{ or } -1$

$$\cdot 11 = -1 + -2$$
 only

- $\bullet 00 = 0$ NOTHING!
- $\cdot 01 = 1 + 1$ only
- $c_{2} = c_{1} = c_{0}$

- Highest adder
 - $C_1 = Carry-in = C_{in}$, $C_2 = Carry-out = C_{out}$
 - No C_{out} or $C_{in} \Rightarrow$ NO overflow!

What $\cdot C_{in}$, and $C_{out} \Rightarrow NO$ overflow!

•
$$C_{in}$$
, but no $C_{out} \Rightarrow A, B$ both > 0, overflow!

• C_{out} , but no $C_{in} \Rightarrow A, B$ both < 0, overflow!

op?

- Consider a 2-bit signed # & overflow:
 - $10 = -2 \\ 11 = -1 \\ 00 = 0 \\ 01 = 1$

Overflows when...

• C_{in} , but no $C_{out} \Rightarrow A,B$ both > 0, overflow! • C_{out} , but no $C_{in} \Rightarrow A,B$ both < 0, overflow!

overflow = $c_n \operatorname{XOR} c_{n-1}$

Extremely Clever Subtractor

1) Truth table for mux with 4-bits of signals has 2⁴ rows

2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl

Peer Instruction Answer

- 1) Truth table for mux with 4-bits of signals controls 16 inputs, for a total of 20 inputs, so truth table is 2²⁰ rows...FALSE
- 2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl ... TRUE
- 1) Truth table for mux with 4-bits of signals is 2⁴ rows long
- 2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl

12

न'न

FT

 $\mathbf{T}\mathbf{F}$

TT

С

d)

"And In conclusion..."

- Use muxes to select among input
 - S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
 - XOR serves as conditional inverter

