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UC Berkeley CS61C : Machlne Structures

Lecture 22 —
Representations of Combinatorial Logic Circuits

2010-03-12

Eric Chang, TA

Cal Alumni Wins 2009 Turing Award!

Charles P. Thacker was named
recipient of the 2009 Turing Award for
inventing the first modern PC.
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Finite State Machine Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1’s in the input.

< Y ey NB— . S ST
TINPUT .¢|1@\|¢IIIQ)\|\ICD|llI\!

%

ouTruT I e

Draw the FSM... _ o, /
' 0\/0 \
SR

Assume state transitions are controlled by the clock:
2 on each clock cycle the machine checks the inputs and moves

to a new state and produces a new output...
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Hardware Implementation of FSM

... Therefore a register is needed to hold the a representation of which
state the machine is in. Use a unique bit pattern for each state.
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Combinational logic circuit is
used to implement a function _#2 4—ax
maps from present state and Ps ¢
. — ]
@ input to next state and output.
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Hardware for FSM: Combinational Logic

This lecture we will discuss the detailed implementation,

but for now can look at its functional specification,

truth table form.
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Truth table...

PS | Input | NS | Output
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
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General Model for Synchronous Systems

clock _[ 1171 | jnput
. .
N N
Input __—; CL [—Hregi-s CL [—Hreg—s-» output
L
¥ output

« Collection of CL blocks separated by registers.

. Reglisters may be back-to-back and CL blocks may be back-to-

bac

» Feedback is optional.

« Clock signal(s) connects only to clock input of registers.

ﬂ CS61C L22 Representations of Combinatorial Logic Circuits (5)

Eric, Spring 2010 © UCB



Review

e State elements are used to:
 Build memories

- Control the flow of information between other
state elements and combinational logic

 D-flip-flops used to build registers

e Clocks tell us when D-flip-flops change
- Setup and Hold times important

 We pipeline long-delay CL for faster clock

 Finite State Machines extremely useful
- Represent states and transitions
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Combinational Logic

 FSMs had states and transitions
 How to we get from one state to the

next?
 Answer: Combinational Logic
clock _[1LIT1 | input
Input — L
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Truth Tables

y
F(0,0,0,0)
F(0,0,0,1)
F(0,0,1,0)
F(0,0,1,1)
F(0,1,0,0)
F(0,1,0,1)
F(0,1,1,0)
F(0,1,1,1)
F(1,0,0,0)
F(1,0,0,1)
F(1,0,1,0)
F(1,0,1,1)
F(1,1,0,0)
F(1,1,0,1)
F(1,1,1,0)
F(1,1,1,1)
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TT Example #1: 1 iff one (not both) a,b=1
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TT Example #2: 2-bit adder

¢

A B a1a0

e
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A B C
b1bg | cacico
00 00 | 000
00 01 | 001
00 10 | 010
00 11 | 011
01 00 | 001
01 01 | 010
01 10 | 011
01 11 100
10 00 | 010
10 01 | 011
10 10 | 100
10 11 101
11 00 | 011
11 01 100
11 10 | 101
11 110

How
Many
Rows?

Eric, Spring 2010 © UCB



TT Example #3: 32-bit unsigned adder

A B C
000 ...0 000 ...0 | 000 ... 00
000 ...0 000...1 | 000 ...01
How
Many
Rows?
111 ...1 111 ...1 | 111 ...10
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TT Example #4: 3-input majority circuit

a b c |y
O 0 010
O 0 110
O 1 010
O 1 1)1
1 0 0]0
1 0 111
1 1 01
1 1 11




Logic Gates (1/2)

Oh 1

G
AND b —
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And vS. Or review — Dan’s mnemonic

AND Gate
Symbol Definition

' 2

- - O O

_ O O
- O O O|
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Logic Gates (2/2)

on b AC
a. —|
NAND b }\C

b ———) >O -
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2-input gates extend to n-inputs

* N-input XOR is the
only one which isn’t
S0 obvious

e It’s simple: XOR is a

1 iff the # of 1s at its
input is odd =
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a b c|y
0O 0 0O
0O 0 111
0O 1 0|1
O 1 110
1 0 O0]1
1 0 160
1 1 00
1 1 1]1
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Truth Table = Gates (e.g., majority circ.)
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Truth Table = Gates (e.g., FSM circ.)

PS | Input | NS | Output
o0| O 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10| O 00 0
10 1 00 1
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NPT ——
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Administrivia

 Midterm has been graded and will be
handed out in lecture Monday.

e Students that provide the best
solution to each problem will be asked
to demonstrate their solution in class
on Monday.

* Next week’s discussion TAs will

answer more questions you have for
the midterm
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Boolean Algebra

* George Boole, 19t Century
mathematician

 Developed a mathematical
Is(;/gs_’tcem (algebra) involving
i

* later known as “Boolean Algebra” g Z258°
* Primitive functions: AND, OR and NOT

 The power of BA is there’s a one-to-one
correspondence between circuits made

up of AND, OR and NOT gates and
equations in BA

(d + means OR,* means AND, X means NOT

CS61C L22 Representations of Combinatorial Logic Circuits (20) Eric, Spring 2010 © UCB



Boolean Algebra (e.g., for majority fun.)

- LD L’:D'“%

v=a*b+a‘c+b-cC

|
Qf y=ab +ac +bc
CS61C L22 Representations of Combinatorial Logic Circuits (21) Eric, Spring 2010 © UCB




Boolean Algebra (e.g., for FSM)

PS | Input | NS | Output
o0| O 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10| O 00 0
10 1 00 1
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Yor —
PSo ~..bo——-—} oLTYUT

TNPUT

or equivalently...

%L e W
PSeo — o} ouTYUT
TNPUT —

y =PS, -+ PS, « INPUT
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BA: Circuit & Algebraic Simplification

original circuit

!
y = ((ab) +a)+c equation derived from original circuit
l
=ab+a+c algebraic simplification
=alb+1)+c
=(a(1) J)r . BA also great for
—a+c circuit verification
b Circ X = Circ Y?
AR
. )y use BA to prove!

simplified circuit

M
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Laws of Boolean Algebra

r-x =10 r+rv=1 complementarity
r-0=0 r+1=1 laws of 0's and 1's
r-l=ux r+0==x _1dentities
r-xr=2x r+r==x idemp otent law
royY=1y-x r+y=vy-+ux commutativity
(zy)z = x(yz2) (z+vy)+2=a+(y+ 2z) associativity
1

ry+z)=axy+axz x+yz=(r+y)x+z) distribution
rxy +ax==x (z4+y)r =x uniting theorem
+y)xr = xy uniting theorem v.2

Ty+r=x+vy (Z 4y
rT-yYy=r+Uy r+y=7T-7 DeMorgan’s Law
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Boolean Algebraic Simplification Example

ab+ a4 c

a(b+ 1) + ¢ distribution, identity
a(l) + c law of 1’s

a-+c identity

S
[
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Canonical forms (1/2)

Sum-of-products
(ORs of ANDs)

abc
000
¢ 001
010
011
a-b-¢ 100
101

a-b-¢ 110
111
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Canonical forms (2/2)

y = abc + abc + abc + abc
=ab(c+c) + ac(b+b) distribution
= ab(1) + ac(1) complementarity
— ab + ac identity

b '—"DH___J

b
QTV )4 = fDLD\g
C DC’\ r—D‘
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Peer Instruction

A. (a+b): (a+b)=b iy ??g
B. N-input gates can be thought of 2. FET
cascaded 2-input gates. l.e., 3: FTF
(@aAbcAdAe)=alA(bc A(dAe)) 4: FTT
where Ais one of AND, OR, XOR, NAND | >: T%"

C. You can use NOR(s) with clever wiring |7: TTIF
( to simulate AND, OR, & NOT 8: TTT
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Peer Instruction Answer
(a+b)+(a+b) = aa+ab+ba+bb = 0+b(a+eT)+b = b+b =b TRUE
. (next slide)

O W »P

. You can use NOR(s) with clever wiring to
simulate AND, OR, & NOT.

° NOR(a,a)=a+a=aa=a
° Using this NOT, can we make a NOR an OR? An And?

°  TRUE _
A. (a+b): (a+b)=b ABC
l: FFF
B. N-input gates can be thought of 2: FFT
cascaded 2-input gates. l.e., 3: FTF
(@aAbcAdAe)=aA(bc A(d Ae)) 4: FIT
where Ais one of AND, OR, XOR, NAND | >: T%"
C. You can use NOR(s) with clever wiring |7: TTF
( to simulate AND, OR, & NOT 8: TTT
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Peer Instruction Answer (B)

B. N-input gates can be thought of cascaded 2-input
gates. l.e.,
(@aAbcAdAe)=aA(bcA(dAe))
where A is one of AND, OR, XOR, NAND...FALSE

Let’s confirm!

CORRECT 3-input CORRECT 2-input
XYZ |AND |OR| XOR |NAND | |YZ |AND |OR | XOR | NAND
000 0 |O 0 1 00| 0 |O 0 1
001 0 |1 1 1 01| 0 |1 1 1
010 O |1 1 1 101 0 |1 1 1
011 0 |1 0 1 111 1 |1 0 0
100] 0 |1 1 1
101 0 |1 0 1
110 O |1 0 1
111 1 |1 1 0
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“And In conclusion...”

* Pipeline big-delay CL for faster clock
 Finite State Machines extremely useful
* You’ll see them again in 150, 152 & 164

* Use this table and techniques we
learned to transform from 1 to another
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