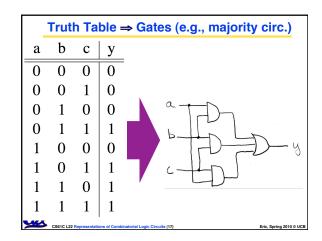
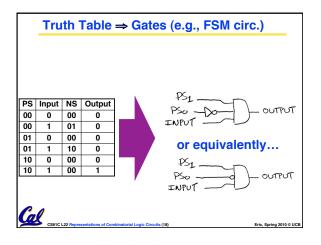
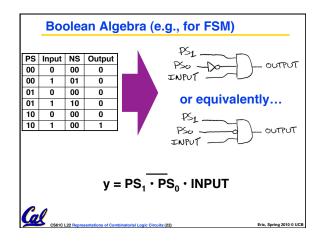
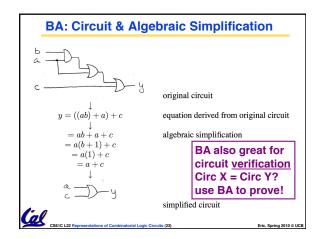

	TT Example #3: 32-bit unsigned adder		
	A	В	C
-	000 0	000 0	000 00
	000 0	000 1	000 01
	•	•	How
	•	•	. Many Rows?
	•	•	. Hows:
	111 1	111 1	111 10
G	CS61C L22 Representations of Con	nbinatorial Logic Circuits (11)	Eric, Spring 2010 ® UCB

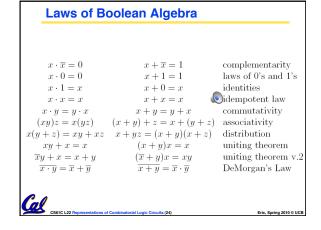




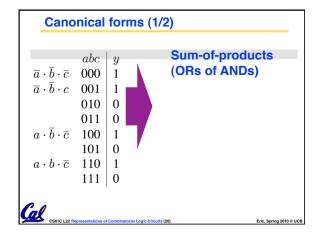
Administrivia


- Midterm has been graded and will be handed out in lecture Monday.
- Students that provide the best solution to each problem will be asked to demonstrate their solution in class on Monday.
- Next week's discussion TAs will answer more questions you have for the midterm

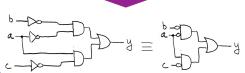



Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic
 - · later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA
- + means OR,• means AND, x̄ means NOT



Boolean Algebraic Simplification Example


$$egin{array}{ll} y &= ab + a + c \ &= a(b+1) + c & \textit{distribution, identity} \ &= a(1) + c & \textit{law of 1's} \ &= a + c & \textit{identity} \end{array}$$

$$\begin{array}{ll} y &= \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c} \\ &= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b) & \textit{distribution} \\ &= \overline{a}\overline{b}(1) + a\overline{c}(1) & \textit{complementarity} \\ &= \overline{a}\overline{b} + a\overline{c} & \textit{identity} \end{array}$$

ric Spring 2010 © UCR

Peer Instruction

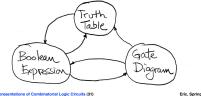
- A. $(a+b) \cdot (\overline{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

ABC 1: FFF

Peer Instruction Answer

- A. $(a+b)\cdot(a+b) = aa+ab+ba+bb = 0+b(a+a)+b = b+b = b$ TRUE
- B. (next slide)
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT.
- ° NOR(a,a)= $\overline{a+a}$ = \overline{aa} = \overline{a}
- Using this NOT, can we make a NOR an OR? An And?
 TRUE
- A. $(a+b) \cdot (\overline{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT


ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT

8: TTT

Peer Instruction Answer (B) B. N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND...FALSE Let's confirm! CORRECT 3-input CORRECT 2-input XYZ | AND | OR | XOR | NAND YZ | AND | OR | XOR | NAND 000| 0 |0 | 0 | 1 001| 0 | 1 00| 0 |0 | 0 | 1 01| 0 |1 | 1 | 010| 0 |1 | 1 | 1 |1 | 011| 0 |1 | 0 11 | 1 | 1 | 100 | 0 | 1 | 1 | 1 101 | 0 | 1 | 0 | 1 111 1

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

