UCB CS61C : Machine Structures

Lecture 19 - Running a Program |i
(Compiling, Assembling, Linking, Loading)

2008'03'05 Neweslfatl?ma

from the 3 row!

BODY MOVEMENTS - POWER!

Researchers at Princeton have developed a
flexible electricity-producing sheet of rubber
that can use body movements into electricity.
Breathing generates 1 W, walking around the
room generates 70 W. Shoes may be the best
place, to power/recharge cell phones & iPods.

www.nytimes.com/2010/03/02/science/02o0bribbon.html

C program: foo.c
N
Compiler

v

Assembly program: foo. s

¥

Object (mach lang module): £foo .o \
2
Linker

7~

Executable (mach lang pgm): a.out
I

Loader
|

Memory

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (2) Garcia, Spring 2010 © UCB

Symbol Table

= List of “items” in this file that may be used by
other files.

= What are they?

= Labels: function calling
= Data: anything in the . data section; variables which

may be accessed across files

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (3) Garcia, Spring 2010 © UCB

Relocation Table

= |ist of “items” this file needs the address |ater.

= What are they?
= Any label jumped to: 5 or jal
= infernal
- external (including lib files)

= Any piece of data connected with an address
= such as the 1a instruction

y ¥ &
-~ 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (4) Garcia, Spring 2010 © UCB

Obiject File

Format

object file header: size and position of the other

pieces of the object file
text segment: the machine code

data segment: binary representation of the data in

the source fi

relocation inf

e
‘ormation: identifies lines of code that

need to be ”

nandled”

symbol table: list of this file's labels and data that

can be referenced
debugaqing information

http: //www skyfree.org/linux/references/ELF_Format.pdf

/ A standard format is ELF (except MS)
j’//

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (5) Garcia, Spring 2010 © UCB

Where Are We Now?

C program: foo.c

-
Compiler

g
Assembly program: foo.s

7
Assembler

/
Object (mach lang module): £foo .o

/7

wv |

v

Executable (mach lang pgm): a.ocut
J
Loader

O

Memory

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (6) Garcia, Spring 2010 © UCB

Linker (1/3)

= |nput: Object Code files, information tables (e.g.,
foo.o0,libc. o for MIPS)

= Qutput: Executable Code
(e.g., a.out for MIPS)

= Combines several object (. o) files into a single

executable (“linking”)

= Enable Separate Compilation of files

= Changes to one file do not require recompilation of
whole program
- Windows NT source was > 40 M lines of code!

o Old name “Link Editor” from editing the “links” in jump
and link instructions

y ¥ &
-~ 7~ CS6ICL19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (7) Garcia, Spring 2010 © UCB

Linker (2/3)

.0 file]
text 1

E a.out
Relocated text |

info 1

Relocated data 1

== - < €S61CL19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (8) Garcia, Spring 2010 © UCB

Linker (3/3)

= Step 1: Take text segment from each . o file and
put them together.

= Step 2: Take data segment from each . o file, put
them together, and concatenate this onto end of
fext segmenis.

= Step 3: Resolve References

= Go through Relocation Table; handle each entry
= That is, fill in all absolute addresses

, -
-~ 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (9) Garcia, Spring 2010 © UCB

Four Types of Addresses we'll discuss

= PC-Relative Addressing (beqg, bne]

= Absolute Address (5, 7a1)
= always relocate

= External Reference (usually §a1)
= always relocate

= Data Reference (often 1ui and ori)
= always relocate

y ¥ &
) -~ 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (10) Garcia, Spring 2010 © UCB

Absolute Addresses in MIPS

= Which instructions need relocation editing?

o J-format: jump, jump and link

‘ j/jal XXXXX

= Loads and stores to variables in static areq, relative
to global pointer

‘ lw/sw| $gp S$x address

= What about conditional branches?
‘beq/bne Srs Srt address ‘
= PC-relative addressing preserved even if code moves

y ¥ &
-~ 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (1) Garcia, Spring 2010 © UCB

Resolving References (1/2)

= Linker assumes first word of first text segment is
at address 0x00000000.

= (More later when we study “virtual memory”)

= Linker knows:
= length of each text and data segment

o ordering of text and data segments
= Linker calculates:

= absolute address of each label to be jumped to
(internal or external) and each piece of data being
referenced

y ¥ &
) - 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (12) Garcia, Spring 2010 © UCB

Resolving References (2/2)

= To resolve references:

search for reference (data or label) in all “user”
symbol tables

if not found, search library files
(for example, for printf)

once absolute address is determined, fill in the
machine code appropriately

= Qutput of linker: executable file containing text
and data (plus header)

-~ 5 CshIc L9 Running a Progam Il ... Compiling, Assembling, Linking, and Loading (13) Garcia, Spring 2010 © UCB

Static vs Dynamically linked libraries

= What we've described is the traditional way:
approach

= The library is now part of the executable, so if the
library updates, we dont get the fix (have to
recompile if we have source)

= |t includes the entire library even if not all of it will be
used.

= Executable is self-contained.

= An alternative is
(DLL), common on Windows & UNIX platforms

» CS6I1C L19 : Running a Progam |l ... Compiling, Assembling, Linking, and Loading (14) Garcia, Spring 2010 © UCB

en.wikipedia.org/wiki/Dynamic_ linking

Dynamically linked libraries

= Space/time issues
o+ Storing a program requires less disk space
=+ Sending a program requires less time

o+ Executing two programs requires less memory (if
they share a library)

= Upgrades

=+ Replacing one file (11ibXYZ . so) upgrades every
program that uses library “XYZ"

Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and operating system.
However, it provides many benefits that often outweigh these.

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (15) Garcia, Spring 2010 © UCB

Dynamically linked libraries

= The prevailing approach to dynamic linking uses
machine code as the “lowest common
denominator”

= The linker does not use information about how the
program or library was compiled (i.e., what compiler

or language)

= This can be described as “linking at the machine
code level”

= This isn’t the only way to do it...

y ¥ &
-~ -2 CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (16) Garcia, Spring 2010 © UCB

Administrivia...Midterm on Monday!

= Review Sat @ Time/location TBA
= Exam Mon @ 7-10pm in 1 Pimentel

= Covers labs, hw, proj, lec, book through today
= Bring...
= NO cells, calculators, pagers, PDAs

o 2 writing implements (we’ll provide write-in exam
booklets) — pencils ok!

o Your green sheet (make sure to correct green sheet
bugs)

i
- 72 CS6ICL19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (17) Garcia, Spring 2010 © UCB

Upcoming Calendar

Week # Mon Wed
#7

This week

SDS | SDS Il

#8 , (TA)
Midterm

Next week | 7-10pm
1 Pimentel

#9 CPU |

(no class,
Next next week see webcast)

Next3 week Spring Break!

2 CS61C L19 : Running a Progam |l ... Compiling, Assembling, Linking, and Loading (18) Garcia, Spring 2010 © UCB

Where Are We Now?

C program: foo.c

-
Compiler

g
Assembly program: foo.s

7
Assembler

/
Object (mach lang module): £foo .o

P
Linker
7

Executable (mach lang pgm): a.out
|

Loader

O

Memory

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (19) Garcia, Spring 2010 © UCB

Loader (1/3)

= |nput: Executable Code
le.g., a.out for MIPS)

Output: (program is run)
Executable files are stored on disk.
When one is run, loader’s job is to load it info

memory and start it running.

In reality, loader is the operating system (OS)
= loading is one of the OS tasks

y ¥ &
) -~ 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (20) Garcia, Spring 2010 © UCB

Loader (2/3)

= So what does a loader do?

= Reads executable file’s header to determine size of
text and data segments

= Creates new address space for program large
enough to hold text and data segments, along with

a stack segment

= Copies instructions and data from executable file
into the new address space

y ¥ &
- 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (21) Garcia, Spring 2010 © UCB

Loader (3/3)

= Copies arguments passed to the program onto
the stack
= |nitializes machine registers

= Most registers cleared, but stack pointer assigned
address of 15 free stack location

= Jumps to start-up routine that copies program’s
arguments from stack to registers & sets the PC

= If main routine returns, start-up routine terminates
program with the exit system call

2 CS61C L19 : Running a Progam |l ... Compiling, Assembling, Linking, and Loading (22) Garcia, Spring 2010 © UCB

Peer Instruction

Which of the following instr. may need
o be edited during link phase?

ori $a0,$at, OxFEDC
bne $a0,$v0, Loop

y ¥ &
) -~ 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (23) Garcia, Spring 2010 © UCB

Loop: lui $at, OxABCD }# .
2

Peer Instruction Answer

Which of the following instr. may need
o be edited during link phase?

Loop: lui $at, OxABCD }# .

ori $a0, $atp,C (l)gf;FE:DCh
bne $a0,$v0, 'rf'évgﬁanc (ir 2

y ¥ &
) -~ 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (24) Garcia, Spring 2010 © UCB

Things to Remember (1/3)

C program: foo.c

N

Compiler !
e
Assembly program: foo. s ‘\

()
N/

Object (mach lang module): foo .o \
U

] ’ |
nker N \l:.bi

v

Executable (mach lang pgm): a.ocut \
J
Loader \

O

Memory \

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (25) Garcia, Spring 2010 © UCB

Things to Remember (2/3)

= Compiler converts a single HLL file into a single assembly
language file.

Assembler removes pseudoinstructions, converts what it can

to machine language, and creates a checklist for the linker

(relocation table). A . s file becomes a . o file.

= Does 2 passes to resolve addresses, handling internal forward
references

Linker combines several . o files and resolves absolute

addresses.

= Enables separate compilation, libraries that need not be compiled,
and resolves remaining addresses

Loader loads executable into memory and begins

execution.

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (26) Garcia, Spring 2010 © UCB

Things to Remember 3/3

= Stored Program concept is very powerful. It
means that instructions sometimes act just like
data. Therefore we can use programs to
manipulate other programs!

o Compiler = Assembler = Linker (= Loadetr)

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (27) Garcia, Spring 2010 © UCB

Bonus slides

= These are exira slides that used to be included
in lecture notes, but have been moved to this,
the “bonus” area to serve as a supplement.

= The slides will appear in the order they would
have in the normal presentation

)

Garcia, Spring 2010 © UCB

Big Endian vs. Little Endian

Big-endian and little-endian derive from Jonathan Swift's Gulliver's Travels in which the Big Endians were a
polifical faction that broke their eggs at the large end (*the primitive way") and rebelled against the
Lilliputian King who required his subjects (the Little Endians) to break their eggs at the small end.

 The order in which BYTES are stored in memory
e Bits always stored as usual.

Consider the number 1025 as we normally write it:
BYTE3

00000000

Big Endian Little Endian

ADDR3 ADDR2 ADDR1 ADDRO ADDR3 ADDR2 ADDR1 ADDRO
BYTE3 BYTE3
00000000 00000000

ADDRO ADDR1 ADDR2 ADDR3 ADDRO ADDR1 ADDR2 ADDR3
BYTE3 BYTE3
00000000 00000000
www .webopedia.com/TERM/b/big endian.html
_ searchnetworking. techtarget.com/sDefinition/0,,sid7 gci211659,00.html
) www .noveltheory.com/TechPapers/endian.asp

en.wikipedia.org/wiki/Big endian
CS61C LiZ infroduciion o MiPS : Procedures ii & Logicai Ops {27) Gaicia, Spring 2010 © UCB

Example: C = Asm = Obj—= Exe = Run

C Program Source Code: prog. c

#include <stdio.h>
int mailn (1int argc, char *argv[]) {
int 1, sum = 0O;
for (1 = 0; 1 <= 100; i++)
sum = sum + 1 * 1;
printf ("The sum of sg from O .. 100 1is
$d\n", sum) ;

“orintf£”livesin “1ibc”

- <~ 5 CS6ICLI9: Running a Progam Il ... Compiling, Assembling, Linking, and Loading (30) Garcia, Spring 2010 © UCB

Compilation: MAL

___.Ltext
.align 2
.globl main
malin:
subu $sp, $sp, 32
sw Sra, 20(Ssp)
sd Sal0, 32(Ssp)
sw $0, 24 ($sp)
sw $0, 28 (S$sp)
loop:
lw St6, 28 (Ssp)
mul St7, Sto6,Sto6
lw St8, 24 (Ssp)
addu St9, St8, St7
sw $t9, 24 (Ssp)

CS61C L12 Infroduction to MIPS : Procedures Il & Logical Ops (31)

addu $t0, $te, 1

sw St0, 28 (Ssp)
ble $t0,100, loop
la $a0, str

lw $al, 24 (Ssp)
jJjal printft

move S$v0, SO

lw Sra, 20(Ssp)
addiu S$sp, $sp, 32
jr Sra

Garcia, Spring 2010 © UCB

Compilation: MAL

___.Ltext
.align 2 sw St0, 28 (Ssp)
.globl main
maln:
lw Sal, 24 (Ssp)
sw Sra, 20(Ssp) jal printf

sw $0, 24 (Ssp) lw Sra, 20(Ssp)

sw $0, 28 (S$sp) addiu S$sp, $sp, 32
loop:

lw St6, 28 (Ssp)

lw St8, 24 (Ssp)
addu St9, $t8,St7
sw $t9, 24 (Ssp)

CS61C L12 Infroduction to MIPS : Procedures |l & Logical Ops (32) Garcia, Spring 2010 © UCB

Assembly step 1:

Remove pseudoinstructions, assign addresses

00 addiu S$29,529,-32 30 addiu $8,514, 1

04 sw $S31,20($29) 34 sw $S8,28($29)
08 sw S4, 32($29) 38 slti s1,$8, 101
Oc sw S5, 36(5$29) 3c bne S1,50, loop
10 sw SO0, 24($29) 40 lui S4, 1.str
14 sw SO0, 28(529) 44 ori S4,54,r.str
18 1w $14, 28($29) 48 1w $5,24($29)
lc multu $14, $14 4c jal printf

20 mflo S15 50 add S2, S0, SO
24 1w $24, 24(529) 54 1w $31,20(529)
28 addu $25,5%24,5815 58 addiu $29,$29, 32
2C SW S25, 24(529) 5¢c Jr S31

CS61C L12 Introduction to MIPS : Procedures Il & Logical Ops (33) Garcia, Spring 2010 © UCB

Assembly step 2

Create relocation table and symbol table
= Symbol Table

Label address (in module) type

main: 0x00000000 global text
loop: 0x00000018 local text
str: 0x00000000 local data

= Relocation Information

Address Instr. type Dependency
0x00000040 lui l.str

0x00000044 ori r.str
O0x0000004c Jal printf

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (34) Garcia, Spring 2010 © UCB

Assembly step 3

Resolve local PC-relative labels

addiu $29,$29,-32
SW $31,20($29)
$4, 32($529)

$5, 36($29)
$0, 24($29)
)

S0, 28($29
$14, 28($29)
$14, $14

$15

$24, 24($29)
$25,%$24,$15
$25, 24(829)

-~ o CS61C L12 Introduction to MIPS : Procedures Il & Logical Ops (35)

30
34
38
3C
40
44
48
4¢c
50

addiu
SW
slti
bne
lui
oril
1w
Jjal
add
1w
addiu
Jjr

$8,$14, 1
$8,28($29)
$1,%$8, 101
$1,%0, -10
s$4,

s4,%4,
$5,24($29)

s2, $0, SO
$31,20($29)
$29,529,32
$31

Garcia, Spring 2010 © UCB

Assembly step 4

= Generate object (. o) file:

= Qutput binary representation for
= ext segment (instructions),
- data segment (data),
- symbol and relocation tables.

= Using dummy “placeholders” for unresolved
absolute and external references.

y ¥ &
-~ 7~ CS6IC L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (36) Garcia, Spring 2010 © UCB

Q2
=
LS,
Q
Q
O
=
=
Q
=
3
v
3
-

QOO OOCOOOHATHAT HOOHATIO OO O OO OO v
OO O OO OOCOOOOT1OTrT 10O OO OO OO O
Or10O+HOHHAAOCOOH 10O+ 10O OO HOHOO O
OOOO AT A A 10O 1O OO OOHOOOHO
Or10O0 A A 10O A 1O A1 OO O O—HOO O
—HOATA OO OO0 OO HA 10 OCOHOOHO v
OO O OO OCOOOr 10001 OOOTTHOOOOO
OO O OO OO0 OO0 10OCOrTT1OCOOOO
OO O OO OO OOCOOOOOT10OCOOOOOOO
OO O OO OO0 OCOOOOOT10COOOOOOO
OO O OO OO0 OCOOOOOTT10OCOOOOOOO
OO O OO OCOOOCOOTHAT H IO OCOOOO OO O
OO O OO OO0 OCOOrT1Or 10 COOOOOO
OO O OO OO0 OCOOT 1O 1OOCOOOOOOO
OO O OO OOOOCOOTHT T T 1IOOCOOOOOOO
OO O OO OOOOOCOOOTHT 1O OCOOOOOOO
O OO OCOOO 100 HOHAOHOOHHO O
Or1 0000 rHO1OO OO+ OO OO OOHOOO
AT OO O OOOO OO HAHOOHHO O
O OOO0 A1 HO OO OO O OHHO O
OO OO0 10000 OOOHOOHOHHO O
A A A A O OO HO O HAHOH O O O
OCOOOOOOOTHT 1O OO O OO OO OOOOHO
A A A A A O O O OHOHO O O
A A A A A A A T O O O H O O v H O
A A A A O OO HOHOHOHO O O
A A AT AT OO HO O A v v A O O
OrdrdrdrArd A1 O OO OO+ O+ OO O
OO OO OOOOOO T 1OrHO O OO OO O
A A AT OO O H A1 O OO H O OO —HO O
OO OO OO OO OO OO OoOO
Ordrd A1 O OO +HOOOHOHOO—HOO O

OO0 VOO VOO0 VOO VOO DO O
OOOO T HrAr AN ANANANM MM < < L0 LOLO) LO)
OO OO OO OO OO OoOO
OO OO OO OO OO OO OoOO
OO OO OO OO OO OO OoOO
OO OO OO OO OO OO OoOOO

KX XXX XXX XXX XX XXX XXX XX XXX
olele)

Garcia, Spring 2010 © UCB

CS61C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (37)

Link step 1: combine prog.o, 1ibc.o

= Merge text/data segments
Create absolute memory addresses

Modity & merge symbol and relocation tables

Symbol Table
o Label Addre

main:
loop:
str:
printf:

Relocation Information

o Address Instr. Type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c Jal printf

_» CS61C L19 : Running a Progam |l ... Compiling, Assembling, Linking, and Loading (38) Garcia, Spring 2010 © UCB

00
04
08
Oc
10
14
18
1c
20

Link step 2:

oFdit Addresses in relocation table

addiu $29,529,-32
SW $S31,20($29)
SW S4, 32($29)
SW S5, 36($29)
SW SO0, 24($29)
SW SO0, 28(s$29)
1w $14, 28($29)
multu $S14, S14
mflo S15

1w S24, 24 ($S29)
addu $25,524,S15
SW S25, 24 ($29)

-~ o CS61C L12 Introduction to MIPS : Procedures Il & Logical Ops (39)

30
34
38
3C
40
44
48
4c
50

addiu $8,514, 1

SW
slti
bne
lui
oril
1w
Jjal
add
lw
addiu
Jr

58,28 (529)
$1,$8, 101
51,50, 10
$4, 4096
$4,$4,1072
55,24 (529)
812

$2, $0, $O
$31,20($29)
$29,$29,32
$31

Garcia, Spring 2010 © UCB

Link step 3:

= Qutput executable of merged modules.
= Single text (instruction) segment
= Single data segment
= Header detailing size of each segment

= NOTE:

= The preceeding example was a much simplified
version of how ELF and other standard formats
work, meant only to demonstrate the basic
principles.

y ¥ &
) -~ 72 CS6I1C L19 : Running a Progam Il ... Compiling, Assembling, Linking, and Loading (40) Garcia, Spring 2010 © UCB

