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2.0 has a 5 Gb/s transfer rate (10x 
performance over USB 2.0 (aka Hi-
Speed USB).  Fully compatible with 
USB 2.0, but to take advantage of the 
new speed, you need USB 3.0 cards.  

Lecturer SOE 
Dan Garcia 

http://www.usb.org/developers/ssusb 

Hello to  
Adrian Sarli 

from Michigan! 
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  Disassembly is simple and starts by decoding 
opcode field. 
  Be creative, efficient when authoring C 

  Assembler expands real instruction set (TAL) 
with pseudoinstructions (MAL) 
  Only TAL can be converted to raw binary 
  Assembler’s job to do conversion 
  Assembler uses reserved register $at 
  MAL makes it much easier to write MIPS 

Review 
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  Interpretation vs Translation 
  Translating C Programs 

  Compiler 
  Assembler 
  Linker (next time) 
  Loader (next time) 

  An Example (next time) 

Overview 
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Language Execution Continuum 
  An Interpreter is a program that executes other 

programs. 

  Language translation gives us another option.  
  In general, we interpret a high level language 

when efficiency is not critical and translate to a 
lower level language to up performance 

Easy to program 
Inefficient to interpret 

Difficult to program 
Efficient to interpret 

Scheme   Java   C++   C Assembly machine language 
Java bytecode 
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Interpretation vs Translation 
  How do we run a program written in a source 

language? 
  Interpreter: Directly executes a program in the source 

language 
  Translator: Converts a program from the source 

language to an equivalent program in another 
language 

  For example, consider a Scheme program 
foo.scm 
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Interpretation 

  Scheme Interpreter is just a program that reads 
a scheme program and performs the functions 
of that scheme program. 
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Translation 
  Scheme Compiler is a translator from Scheme to 

machine language. 
  The processor is a hardware interpeter of 

machine language.  
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Interpretation 
  Any good reason to interpret machine language 

in software? 
  SPIM – useful for learning / debugging 
  Apple Macintosh conversion 

  Switched from Motorola 680x0 instruction 
architecture to PowerPC. 
  Similar issue with switch to x86. 

  Could require all programs to be re-translated from 
high level language 

  Instead, let executables contain old and/or new 
machine code, interpret old code in software if 
necessary (emulation) 
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Interpretation vs. Translation? (1/2) 
  Generally easier to write interpreter 
  Interpreter closer to high-level, so can give 

better error messages (e.g., MARS, stk) 
  Translator reaction: add extra information to help 

debugging (line numbers, names) 

  Interpreter slower (10x?), code smaller (2x?) 
  Interpreter provides instruction set 

independence: run on any machine 
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Interpretation vs. Translation? (2/2) 
  Translated/compiled code almost always more 

efficient and therefore higher performance: 
  Important for many applications, particularly 

operating systems. 

  Translation/compilation helps “hide” the 
program “source” from the users: 
  One model for creating value in the marketplace (eg. 

Microsoft keeps all their source code secret) 
  Alternative model, “open source”, creates value by 

publishing the source code and fostering a 
community of developers. 
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Steps to Starting a Program (translation) 
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  Input: High-Level Language Code  
(e.g., C, Java such as foo.c) 

  Output: Assembly Language Code 
(e.g., foo.s for MIPS) 

  Note: Output may contain pseudoinstructions 
  Pseudoinstructions: instructions that assembler 

understands but not in machine (last lecture) 
For example: 
  mov $s1,$s2 ⇒ or $s1,$s2,$zero 

Compiler 
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Administrivia… 

  Midterm Exam on Monday @ 7-10pm. 
  You’re responsible for all material up through Fri 

  You get to bring 
  All your notes and books 
  Your green sheet 
  Pens & Pencils 

  What you don’t need to bring 
  Calculator, cell phone, pagers 

  Conflicts? Email Scott (head TA) 
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Where Are We Now? 

CS164 
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  Input: Assembly Language Code 
(e.g., foo.s for MIPS) 

  Output: Object Code, information tables 
(e.g., foo.o for MIPS) 

  Reads and Uses Directives 
  Replace Pseudoinstructions 
  Produce Machine Language 
  Creates Object File 

Assembler 
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  Give directions to assembler, but do not produce 
machine instructions 
 .text: Subsequent items put in user text segment 

(machine code) 
 .data: Subsequent items put in user data segment 

(binary rep of data in source file) 
 .globl sym: declares sym global and can be 

referenced from other files 
 .asciiz str: Store the string str in memory and 

null-terminate it 
 .word w1…wn: Store the n 32-bit quantities in 
successive memory words 

Assembler Directives (p. A-51 to A-53) 
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  Asm. treats convenient variations of machine 
language instructions as if real instructions 
Pseudo:  Real: 

  subu $sp,$sp,32  addiu $sp,$sp,-32 
  sd $a0, 32($sp)  sw $a0, 32($sp) 

 sw $a1, 36($sp) 
  mul $t7,$t6,$t5  mul $t6,$t5 

 mflo $t7 
  addu $t0,$t6,1  addiu $t0,$t6,1 
  ble $t0,100,loop  slti $at,$t0,101 

 bne $at,$0,loop 
  la $a0, str  lui $at,left(str) 
  ori $a0,$at,right(str) 

Pseudoinstruction Replacement 
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Producing Machine Language (1/3) 
  Simple Case 

  Arithmetic, Logical, Shifts, and so on. 
  All necessary info is within the instruction already. 

  What about Branches? 
  PC-Relative 
  So once pseudo-instructions are replaced by real 

ones, we know by how many instructions to branch. 

  So these can be handled. 
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Producing Machine Language (2/3) 
  “Forward Reference” problem 

  Branch instructions can refer to labels that are 
“forward” in the program: 

  Solved by taking 2 passes over the program.  
  First pass remembers position of labels 
  Second pass uses label positions to generate code  

     or   $v0, $0,  $0 
L1: slt  $t0, $0,  $a1 
    beq  $t0, $0,  L2 
    addi $a1, $a1, -1 
    j    L1 
L2: add  $t1, $a0, $a1"
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  What about jumps (j and jal)? 
  Jumps require absolute address. 
  So, forward or not, still can’t generate machine 

instruction without knowing the position of 
instructions in memory. 

  What about references to data? 
  la gets broken up into lui and ori 
  These will require the full 32-bit address of the 

data. 

  These can’t be determined yet, so we create 
two tables… 

Producing Machine Language (3/3) 
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Symbol Table 
  List of “items” in this file that may be used by 

other files. 
  What are they? 

  Labels: function calling 
  Data: anything in the .data section; variables which 

may be accessed across files 
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  List of “items” this file needs the address later. 
  What are they? 

  Any label jumped to: j or jal 
  internal 
  external (including lib files) 

  Any piece of data 
  such as the la instruction 

Relocation Table 
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  object file header: size and position of the other 
pieces of the object file 

  text segment: the machine code 
  data segment: binary representation of the data in 

the source file 
  relocation information: identifies lines of code that 

need to be “handled” 
  symbol table: list of this file’s labels and data that 

can be referenced 
  debugging information 
  A standard format is ELF (except MS) 

http://www.skyfree.org/linux/references/ELF_Format.pdf 

Object File Format 
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1)  Assembler will ignore the instruction Loop:nop 
because it does nothing. 

2)  Java designers used a translater AND interpreter 
(rather than just a translater) mainly because of (at 
least 1 of): ease of writing, better error msgs, smaller 
object code. 

   12 
a) FF 
b) FT 
c) TF 
d) TT 

Peer Instruction 
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1)  Assembler keeps track 
of all labels in symbol 
table…F! 

2)  Java designers used 
both mainly because of 
code portability…F! 

Peer Instruction Answer 

1)  Assembler will ignore the instruction Loop:nop 
because it does nothing. 

2)  Java designers used a translater AND interpreter 
(rather than just a translater) mainly because of (at 
least 1 of): ease of writing, better error msgs, smaller 
object code. 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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And in conclusion… 
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Bonus slides 

  These are extra slides that used to be 
included in lecture notes, but have been 
moved to this, the “bonus” area to serve as a 
supplement. 

  The slides will appear in the order they would 
have in the normal presentation 
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Integer Multiplication (1/3) 

  Paper and pencil example (unsigned): 
 Multiplicand  1000  8  
 Multiplier   x1001  9 
               1000 
              0000 
             0000 
           +1000     
           01001000   

  m bits x n bits = m + n bit product 
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Integer Multiplication (2/3) 

 In MIPS, we multiply registers, so: 
  32-bit value x 32-bit value = 64-bit value 

 Syntax of Multiplication (signed): 
   mult  register1, register2 
  Multiplies 32-bit values in those registers & puts 64-

bit product in special result regs: 
  puts product upper half in hi, lower half in lo 

  hi and lo are 2 registers separate from the 32 
general purpose registers 

  Use mfhi register & mflo register to move from 
hi, lo to another register 
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Integer Multiplication (3/3) 

 Example: 
  in C:  a = b * c; 
  in MIPS: 

  let b be $s2; let c be $s3; and let a be $s0 and 
$s1 (since it may be up to 64 bits) 

 mult $s2,$s3  # b*c      
mfhi $s0   # upper half of 
               # product into $s0 
mflo $s1   # lower half of 
               # product into $s1 

 Note: Often, we only care about the lower half 
of the product. 



CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (31) Garcia, Spring 2010 © UCB 

Integer Division (1/2) 

  Paper and pencil example (unsigned): 
          1001   Quotient 
Divisor 1000|1001010  Dividend 
            -1000 
                10 
                101 
                1010 
               -1000 
                  10 Remainder 
                (or Modulo result) 

  Dividend = Quotient x Divisor + Remainder 
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 Syntax of Division (signed): 
  div  register1, register2 

  Divides 32-bit register 1 by 32-bit register 2:  

  puts remainder of division in hi, quotient in lo 

 Implements C division (/) and modulo (%) 

 Example in C:  a = c / d;    b = c % d; 

 in MIPS: a↔$s0;b↔$s1;c↔$s2;d↔$s3 

 div  $s2,$s3  # lo=c/d, hi=c%d     
mflo $s0   # get quotient  
mfhi $s1   # get remainder 

Integer Division (2/2) 


