UCB CS61C : Machine Structures

Lecture 18 - Running a Program |
(Compiling, Assembling, Linking, Loading)

2010-03-03 s

from Michigan!

USB 3.0 (SUPERSPEED USB) OUT

2.0 has a 5 Gb/s transfer rate (10x
performance over USB 2.0 (aka Hi-
Speed USB). Fully compatible wit
USB 2.0, but to take advantage of the
new speed, you need USB 3.0 cards.

http://www.usb.org/developers/ssusb

P,

= Disassembly is simple and starts by decoding
opcode field.

= Be creative, efficient when authoring C

= Assembler expands real instruction set (TAL)
with pseudoinstructions (MAL)

= Only TAL can be converted to raw binary
= Assembler’s job to do conversion

Assembler uses reserved register Sat
MAL makes it much easier to write MIPS

.
) - ¥~ CS6IC L18 : Running a Progam I ... Compiling, Assembling, Linking, and Loading (2) Garcia, Spring 2010 © UCB

Overview

= |nferpretation vs Translation

= Translating C Programs
ompiler
ssembler

i
2 CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (3) Garcia, Spring 2010 © UCB

Language Execution Continuum

= An IS a program that executes other
programs.

Java bytecode
Scheme Java C++ C Assembly machine language

Easy to program Difficult to program
Inefficient to interpret Efficient to interpret

= Language franslation gives us another option.

= |n general, we a high level language
when efficiency is not critical and franslate to a
lower level language to up performance

//'" vd //,
R 2_\ "

CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (4) Garcia, Spring 2010 © UCB

Interpretation vs Translation

= How do we run a program written in a source
language?

: Directly executes a program in the source
language

= Translator: Converts a program from the source

language to an equivalent program in another
language

= For example, consider a Scheme program
foo.scm

y ¥ &
- ¥~ CS6IC L18 : Running a Progam I ... Compiling, Assembling, Linking, and Loading (5) Garcia, Spring 2010 © UCB

Interpretation

Scheme program: foo.scm

4

\

Scheme interpreter \

= Scheme Interpreter is just a program that reads

a scheme program and performs the functions
of that scheme program.

> CS6IC L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (6) Garcia, Spring 2010 © UCB

Translation

= Scheme Compiler is a translator from Scheme to
machine language.

= The processor is a hardware interpeter of
machine language.

Scheme program: foo.scm

| 4

/ Scheme Compiler J

\

\

Garcia, Spring 2010 © UCB

Interpretation

= Any good reason to interpret machine language
in software?

= SPIM — usetul for learning / debugging

= Apple Macintosh conversion
= Switched from Motorola 680x0 instruction

architecture to PowerPC.
= Similar issue with switch to x86.

= Could require all programs to be re-translated from
high level language

o |nstead, let executables contain old and/or new
machine code, interpret old code in software if
necessary (emulation)

-~ 5 Cs6IC I8 Running a Progam | ... Compiling, Assembling, Linking, and Loading (8) Garcia, Spring 2010 © UCB

Interpretation vs. Translation? (1/2)

= Generally easier to write interpreter
= |nterpreter closer to high-level, so can give
better error messages (e.g., MARS, stk

= Translator reaction: add exira information to help
debugging (line numbers, names)

= |nterpreter slower (10x?), code smaller (2x?)

= |nferpreter provides instruction set
independence: run on any machine

-~ 5 Cs6IC I8 Running a Progam | ... Compiling, Assembling, Linking, and Loading (9) Garcia, Spring 2010 © UCB

Interpretation vs. Translation? (2/2)

= Translated/compiled code almost always more
efficient and therefore higher performance:

o Important for many applications, particularly
operating systems.

= Translation/compilation helps “hide” the

program “source” from the users:

= One model for creating value in the marketplace (eg.
Microsoft keeps all their source code secret)

= Alternative model, “open source”, creates value by
publishing the source code and fostering a
community of developers.

y ¥ &
-~ 7~ CS6IC L18 : Running a Progam I ... Compiling, Assembling, Linking, and Loading (10) Garcia, Spring 2010 © UCB

Steps to Starting a Program (translation)

C program: foo .c

N

Compiler ‘
8
Assembly program: foo.s ‘\

()
.

Object (mach lang module): foo .o \
%

] ’ |
nker \ \l:.bi

v

Executable (mach lang pgm): a.out
J
Loader

O

Memory

CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (11) Garcia, Spring 2010 © UCB

Compiler

= |nput: High-Level Language Code
le.g., C, Java such as foo.c)

= Qutput: Assembly Language Code
le.g., foo. s for MIPS)

= Note: Output may contain pseudoinstructions

o - instructions that assembler
understands but not in machine (last lecture)
For example:

o mov $sl,$s2 = or S$sl,$s2,S$zero

i
) " CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (12) Garcia, Spring 2010 © UCB

Administrivia...

= Midterm Exam on Monday @ 7-10pm.

o You're responsible for all material up through Fri

= You get to bring

o All your notes and books
o Your green sheet
= Pens & Pencils

= What you don't need to bring
o Calculator, cell phone, pagers

= Conflicts? Email Scott (head TA)

y ¥ &
-~ 7~ CS6IC L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (13) Garcia, Spring 2010 © UCB

Where Are We Now?

C program: foo.c
-
Compiler
e
Assembly program: foo.s

-

S B

Object (mach lang module): £oo .o \
U

] |
i [‘
v

Executable (mach lang pgm): a.ocut

4

Loader

\}

Memory

CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (14) Garcia, Spring 2010 © UCB

Assembler

= |nput: Assembly Language Code
le.g., foo. s for MIPS)

= Qutput: Object Code, information tables
le.g., foo. o for MIPS)

Reads and Uses Directives
Replace Pseudoinstructions
Produce Machine Language
Creates Obiject File

;¥ g
) -~ 7~ CS6IC L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (15) Garcia, Spring 2010 © UCB

Assembler Directives (p. A-51 to A-53)

= Give directions to assembler, but do not produce
machine instructions

. text: Subsequent items put in user text segment
(machine code)

.data: Subsequent items put in user data segment

(binary rep of data in source file)

.globl sym: declares sym global and can be
referenced from other files

.asciiz str: Store the string str in memory and
null-terminate it

.word wl..wn: Store the n 32-bit quantities in
successive memory words

p— - < CshIC L8 ; Running a Progam | ... Compiling, Assembling, Linking, and Loading (16) Garcia, Spring 2010 © UCB

Pseudoinstruction Replacement

= Asm. treats convenient variations of machine
language instructions as if real instructions
Pseudo: Real:

subu S$sp, $sp, 32 addiu $sp, $sp,-32

sd $al0, 32 (Ssp) sw $al0, 32(Ssp)
sw Sal, 36 (S$Ssp)

mul S$t7,$t6,S$t5 mul $t6,St5
mflo $t7

addu $t0,$t6,1 addiu $t0,$t6,1

ble $t0,100,loop slti $at,$t0,101
bne $at,$0,loop

la $a0, str lui Sat,left(str)
ori $a0l,$at,right(str)

i
~ 7~ CS6IC L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (17) Garcia, Spring 2010 © UCB

Producing Machine Language (1/3)

= Simple Case
= Arithmetic, Logical, Shifts, and so on.
o All necessary info is within the instruction already.

= What about Branches?
= PC-Relative

= S0 once pseudo-instructions are replaced by real
ones, we know by how many instructions to branch.

= So these can be handled.

y ¥ &
) -~ 7~ CS6IC L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (18) Garcia, Spring 2010 © UCB

Producing Machine Language (2/3)

= “Forward Reference” problem

= Branch instructions can refer to labels that are
“forward” in the program:

or Svo, $0, SO
L1: slt $t0, $0, Sal
beq $t0, $0,
addi $al, $al, -1
3 L1
: add $tl, $a0, Sal

= Solved by taking 2 passes over the program.
- First pass remembers position of labels
- Second pass uses label positions to generate code

CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (19) Garcia, Spring 2010 © UCB

Producing Machine Language (3/3)

= What about jumps (§ and jal)?
= Jumps require absolute address.

= So, forward or not, still can’t generate machine
instruction without knowing the position of
instructions in memory.

= What about references to data?
o 1a gets broken up into 1ui and ori

= These will require the full 32-bit address of the
data.

= These can't be determined yet, so we create

~ twotables...

== - ", CS6IC 18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (20) Garcia, Spring 2010 © UCB

Symbol Table

= List of “items” in this file that may be used by
other files.

= What are they?

= Labels: function calling
= Data: anything in the . data section; variables which

may be accessed across files

CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (21) Garcia, Spring 2010 © UCB

Relocation Table

= |ist of “items” this file needs the address |ater.

= What are they?
= Any label jumped to: j or jal
= infernal
- external (including lib files)

= Any piece of data
= such as the 1a instruction

y ¥ &
-~ 7~ CS6IC L18 : Running a Progam I ... Compiling, Assembling, Linking, and Loading (22) Garcia, Spring 2010 © UCB

Obiject File

Format

object file header: size and position of the other

pieces of the object file
text segment: the machine code

data segment: binary representation of the data in

the source fi

relocation inf

e
‘ormation: identifies lines of code that

need to be ”

nandled”

symbol table: list of this file's labels and data that

can be referenced
debugaqing information

http: //www skyfree.org/linux/references/ELF_Format.pdf

/ A standard format is ELF (except MS)
j’//

CS61C L18 : Running a Progam | ..

. Compiling, Assembling, Linking, and Loading (23) Garcia, Spring 2010 © UCB

Peer Instruction

Assembler will ignore the instruction 12
because it does nothing. FF

ET
TF
TT

2) Java designers used a translater AND interpreter
(rather than just a translater) mainly because of (at

o least 1 of): ease of writing, better error msgs, smaller
// object code.

Q L7
\;.,A\ e Q.

CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (24) Garcia, Spring 2010 © UCB

Peer Instruction Answer

1) Assembler keeps track gz
of all labels in symbol | mmmmmm . (Compiier)

I lorldd java
Table. .o F. HelloWorldepp. j
2) Java designers used (=

both mainly because of
code portability. . .F!

ann

Win32 Solaris MacOS

Assembler will ignore the instruction 12
because it does nothing. FE

ET
TF
TT

2) Java designers used a translater AND interpreter

(rather than just a translater) mainly because of (at
. least 1 of): ease of writing, better error msgs, smaller
// object code.

//f L
b R o

CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (25) Garcia, Spring 2010 © UCB

And in conclusion...

C program: foo.c
N
Compiler

v

Assembly program: foo. s

¥

Object (mach lang module): £foo .o \
4
Linker
/

Executable (mach lang pgm): a.out
I

Loader
|

Memory

CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (26) Garcia, Spring 2010 © UCB

Bonus slides

» These are exira slides that used to be
included in lecture notes, but have been

moved to this, the “bonus” area to serve as @
supplement.

= The slides will appear in the order they would
have in the normal presentation

)

W

. CS61C L18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (27) Garcia, Spring 2010 © UCB

Integer Multiplication (1/3)

= Paper and pencil example (unsigned):

Multiplicand 1000 8
Multiplier x1001 9
1000
0000
0000
+1000
01001000

= m bits X n bits = m + n bit product

y ¥ &
-~ 7~ CS6IC L18 : Running a Progam I ... Compiling, Assembling, Linking, and Loading (28) Garcia, Spring 2010 © UCB

Integer Multiplication (2/3)

=In MIPS, we multiply registers, so:
o 32-bit value x 32-bit value = 64-bit value

= Syntax of Multiplication (signed):
o mult registerl, register2

= Multiplies 32-bit values in those registers & puts 64-
bit product in special result regs:

- puts product

and o are 2 registers separate from the 32
general purpose registers

o Use & to move from
, 1o another register

y ¥ &
- 7~ CS6IC L18 : Running a Progam I ... Compiling, Assembling, Linking, and Loading (29) Garcia, Spring 2010 © UCB

Intfeger Multiplication (3/3)

=Example:
o inC:. a =b * c;
= in MIPS:

- letb be $s2; let c be $s3; and let a be $s0 and
Ss1 (since it may be up to 64 bits)

mult $s2,Ss3
mfhi S$SsO

mflo Ssl

=Note: Often, we only care about the lower half
f the product.

== - ", CS6IC 18 : Running a Progam | ... Compiling, Assembling, Linking, and Loading (30) Garcia, Spring 2010 © UCB

‘!.-") /.-- -
QL

'
4
|

Integer Division (1/2)

= Paper and pencil example (unsigned):

1001 Quotilient

Divisor 1000(1001010 Dividend
-1000

10

101

1010

-1000
10 Remainder
(or Modulo result)

= Dividend = Quotient x Divisor + Remainder

y ¥ &
-~ 7~ CS6IC L18 : Running a Progam I ... Compiling, Assembling, Linking, and Loading (31) Garcia, Spring 2010 © UCB

Integer Division (2/2)

= Syntax of Division (signed):
o div registerl, reqgister2
= Divides 32-bit register 1 by 32-bit register 2:

o puts remainder of division in hi, quotientin 1o

= Implements C division (/) and modulo (%)
=ExampleinC: a = ¢ / d; b =c % d;

5N MIPS: a<»$s0;b<>Ss1;c<>$s2;:d<>$s3

div S$s2,5s3 # lo=c/d, hi=c%d
mflo $sO # get quotient
mfhi $sl # get remainder

y ¥ &
- 7~ CS6IC L18 : Running a Progam I ... Compiling, Assembling, Linking, and Loading (32) Garcia, Spring 2010 © UCB

