
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 18 – Running a Program I
(Compiling, Assembling, Linking, Loading)

 2010-03-03

2.0 has a 5 Gb/s transfer rate (10x
performance over USB 2.0 (aka Hi-
Speed USB). Fully compatible with
USB 2.0, but to take advantage of the
new speed, you need USB 3.0 cards.

Lecturer SOE
Dan Garcia

http://www.usb.org/developers/ssusb

Hello to
Adrian Sarli

from Michigan!

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (2) Garcia, Spring 2010 © UCB

  Disassembly is simple and starts by decoding
opcode field.
  Be creative, efficient when authoring C

  Assembler expands real instruction set (TAL)
with pseudoinstructions (MAL)
  Only TAL can be converted to raw binary
  Assembler’s job to do conversion
  Assembler uses reserved register $at
  MAL makes it much easier to write MIPS

Review

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (3) Garcia, Spring 2010 © UCB

  Interpretation vs Translation
  Translating C Programs

  Compiler
  Assembler
  Linker (next time)
  Loader (next time)

  An Example (next time)

Overview

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (4) Garcia, Spring 2010 © UCB

Language Execution Continuum
  An Interpreter is a program that executes other

programs.

  Language translation gives us another option.
  In general, we interpret a high level language

when efficiency is not critical and translate to a
lower level language to up performance

Easy to program
Inefficient to interpret

Difficult to program
Efficient to interpret

Scheme Java C++ C Assembly machine language
Java bytecode

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (5) Garcia, Spring 2010 © UCB

Interpretation vs Translation
  How do we run a program written in a source

language?
  Interpreter: Directly executes a program in the source

language
  Translator: Converts a program from the source

language to an equivalent program in another
language

  For example, consider a Scheme program
foo.scm

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (6) Garcia, Spring 2010 © UCB

Interpretation

  Scheme Interpreter is just a program that reads
a scheme program and performs the functions
of that scheme program.

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (7) Garcia, Spring 2010 © UCB

Translation
  Scheme Compiler is a translator from Scheme to

machine language.
  The processor is a hardware interpeter of

machine language.

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (8) Garcia, Spring 2010 © UCB

Interpretation
  Any good reason to interpret machine language

in software?
  SPIM – useful for learning / debugging
  Apple Macintosh conversion

  Switched from Motorola 680x0 instruction
architecture to PowerPC.
  Similar issue with switch to x86.

  Could require all programs to be re-translated from
high level language

  Instead, let executables contain old and/or new
machine code, interpret old code in software if
necessary (emulation)

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (9) Garcia, Spring 2010 © UCB

Interpretation vs. Translation? (1/2)
  Generally easier to write interpreter
  Interpreter closer to high-level, so can give

better error messages (e.g., MARS, stk)
  Translator reaction: add extra information to help

debugging (line numbers, names)

  Interpreter slower (10x?), code smaller (2x?)
  Interpreter provides instruction set

independence: run on any machine

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (10) Garcia, Spring 2010 © UCB

Interpretation vs. Translation? (2/2)
  Translated/compiled code almost always more

efficient and therefore higher performance:
  Important for many applications, particularly

operating systems.

  Translation/compilation helps “hide” the
program “source” from the users:
  One model for creating value in the marketplace (eg.

Microsoft keeps all their source code secret)
  Alternative model, “open source”, creates value by

publishing the source code and fostering a
community of developers.

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (11) Garcia, Spring 2010 © UCB

Steps to Starting a Program (translation)

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (12) Garcia, Spring 2010 © UCB

  Input: High-Level Language Code
(e.g., C, Java such as foo.c)

  Output: Assembly Language Code
(e.g., foo.s for MIPS)

  Note: Output may contain pseudoinstructions
  Pseudoinstructions: instructions that assembler

understands but not in machine (last lecture)
For example:
  mov $s1,$s2 ⇒ or $s1,$s2,$zero

Compiler

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (13) Garcia, Spring 2010 © UCB

Administrivia…

  Midterm Exam on Monday @ 7-10pm.
  You’re responsible for all material up through Fri

  You get to bring
  All your notes and books
  Your green sheet
  Pens & Pencils

  What you don’t need to bring
  Calculator, cell phone, pagers

  Conflicts? Email Scott (head TA)

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (14) Garcia, Spring 2010 © UCB

Where Are We Now?

CS164

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (15) Garcia, Spring 2010 © UCB

  Input: Assembly Language Code
(e.g., foo.s for MIPS)

  Output: Object Code, information tables
(e.g., foo.o for MIPS)

  Reads and Uses Directives
  Replace Pseudoinstructions
  Produce Machine Language
  Creates Object File

Assembler

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (16) Garcia, Spring 2010 © UCB

  Give directions to assembler, but do not produce
machine instructions
 .text: Subsequent items put in user text segment

(machine code)
 .data: Subsequent items put in user data segment

(binary rep of data in source file)
 .globl sym: declares sym global and can be

referenced from other files
 .asciiz str: Store the string str in memory and

null-terminate it
 .word w1…wn: Store the n 32-bit quantities in
successive memory words

Assembler Directives (p. A-51 to A-53)

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (17) Garcia, Spring 2010 © UCB

  Asm. treats convenient variations of machine
language instructions as if real instructions
Pseudo: Real:

 subu $sp,$sp,32 addiu $sp,$sp,-32
 sd $a0, 32($sp) sw $a0, 32($sp)

 sw $a1, 36($sp)
 mul $t7,$t6,$t5 mul $t6,$t5

 mflo $t7
 addu $t0,$t6,1 addiu $t0,$t6,1
 ble $t0,100,loop slti $at,$t0,101

 bne $at,$0,loop
 la $a0, str lui $at,left(str)
 ori $a0,$at,right(str)

Pseudoinstruction Replacement

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (18) Garcia, Spring 2010 © UCB

Producing Machine Language (1/3)
  Simple Case

  Arithmetic, Logical, Shifts, and so on.
  All necessary info is within the instruction already.

  What about Branches?
  PC-Relative
  So once pseudo-instructions are replaced by real

ones, we know by how many instructions to branch.

  So these can be handled.

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (19) Garcia, Spring 2010 © UCB

Producing Machine Language (2/3)
  “Forward Reference” problem

  Branch instructions can refer to labels that are
“forward” in the program:

  Solved by taking 2 passes over the program.
  First pass remembers position of labels
  Second pass uses label positions to generate code

 or $v0, $0, $0
L1: slt $t0, $0, $a1
 beq $t0, $0, L2
 addi $a1, $a1, -1
 j L1
L2: add $t1, $a0, $a1"

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (20) Garcia, Spring 2010 © UCB

  What about jumps (j and jal)?
  Jumps require absolute address.
  So, forward or not, still can’t generate machine

instruction without knowing the position of
instructions in memory.

  What about references to data?
  la gets broken up into lui and ori
  These will require the full 32-bit address of the

data.

  These can’t be determined yet, so we create
two tables…

Producing Machine Language (3/3)

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (21) Garcia, Spring 2010 © UCB

Symbol Table
  List of “items” in this file that may be used by

other files.
  What are they?

  Labels: function calling
  Data: anything in the .data section; variables which

may be accessed across files

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (22) Garcia, Spring 2010 © UCB

  List of “items” this file needs the address later.
  What are they?

  Any label jumped to: j or jal
  internal
  external (including lib files)

  Any piece of data
  such as the la instruction

Relocation Table

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (23) Garcia, Spring 2010 © UCB

  object file header: size and position of the other
pieces of the object file

  text segment: the machine code
  data segment: binary representation of the data in

the source file
  relocation information: identifies lines of code that

need to be “handled”
  symbol table: list of this file’s labels and data that

can be referenced
  debugging information
  A standard format is ELF (except MS)

http://www.skyfree.org/linux/references/ELF_Format.pdf

Object File Format

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (24) Garcia, Spring 2010 © UCB

1)  Assembler will ignore the instruction Loop:nop
because it does nothing.

2)  Java designers used a translater AND interpreter
(rather than just a translater) mainly because of (at
least 1 of): ease of writing, better error msgs, smaller
object code.

 12
a) FF
b) FT
c) TF
d) TT

Peer Instruction

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (25) Garcia, Spring 2010 © UCB

1)  Assembler keeps track
of all labels in symbol
table…F!

2)  Java designers used
both mainly because of
code portability…F!

Peer Instruction Answer

1)  Assembler will ignore the instruction Loop:nop
because it does nothing.

2)  Java designers used a translater AND interpreter
(rather than just a translater) mainly because of (at
least 1 of): ease of writing, better error msgs, smaller
object code.

 12
a) FF
b) FT
c) TF
d) TT

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (26) Garcia, Spring 2010 © UCB

And in conclusion…

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (27) Garcia, Spring 2010 © UCB

Bonus slides

  These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

  The slides will appear in the order they would
have in the normal presentation

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (28) Garcia, Spring 2010 © UCB

Integer Multiplication (1/3)

  Paper and pencil example (unsigned):
 Multiplicand 1000 8
 Multiplier x1001 9
 1000
 0000
 0000
 +1000
 01001000

  m bits x n bits = m + n bit product

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (29) Garcia, Spring 2010 © UCB

Integer Multiplication (2/3)

 In MIPS, we multiply registers, so:
  32-bit value x 32-bit value = 64-bit value

 Syntax of Multiplication (signed):
  mult register1, register2
  Multiplies 32-bit values in those registers & puts 64-

bit product in special result regs:
  puts product upper half in hi, lower half in lo

  hi and lo are 2 registers separate from the 32
general purpose registers

  Use mfhi register & mflo register to move from
hi, lo to another register

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (30) Garcia, Spring 2010 © UCB

Integer Multiplication (3/3)

 Example:
  in C: a = b * c;
  in MIPS:

  let b be $s2; let c be $s3; and let a be $s0 and
$s1 (since it may be up to 64 bits)

 mult $s2,$s3 # b*c
mfhi $s0 # upper half of
 # product into $s0
mflo $s1 # lower half of
 # product into $s1

 Note: Often, we only care about the lower half
of the product.

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (31) Garcia, Spring 2010 © UCB

Integer Division (1/2)

  Paper and pencil example (unsigned):
 1001 Quotient
Divisor 1000|1001010 Dividend
 -1000
 10
 101
 1010
 -1000
 10 Remainder
 (or Modulo result)

  Dividend = Quotient x Divisor + Remainder

CS61C L18 : Running a Progam I … Compiling, Assembling, Linking, and Loading (32) Garcia, Spring 2010 © UCB

 Syntax of Division (signed):
  div register1, register2

  Divides 32-bit register 1 by 32-bit register 2:

  puts remainder of division in hi, quotient in lo

 Implements C division (/) and modulo (%)

 Example in C: a = c / d; b = c % d;

 in MIPS: a↔$s0;b↔$s1;c↔$s2;d↔$s3

 div $s2,$s3 # lo=c/d, hi=c%d
mflo $s0 # get quotient
mfhi $s1 # get remainder

Integer Division (2/2)

