CS61C : Machine Structures

Lecture 17
Instruction Representation il

Hello to Sherif Kandel

201 0-03-01 listening from Egypt!

Lecturer SOE Dan Garcia

www.cs .berkeley.edu/~ddgarcia

Handling a mountain of data! =
Microsoft Live Labs has releaseda -
tool to “make it easier to interact with - .-
massive amounts of data in ways that are powerful, _ =%
informative and fun.” Imagine being able to look at - ﬁ
all of wikipedia or flickr and filter/query very easily.]@

£l
T — -

‘(d getpivot.com
CS61C L17 MIPS Instruction Format Il (1) Spring 2010 © UCB

Review

* MIPS Machine Language Instruction:
32 bits representing a single instruction

R opcode rs rt rd shamt | funct
| | opcode| rs rt immediate
J L opcode target address

* Branches use PC-relative addressing,

Jumps use absolute addressing.

@ CS61C L17 MIPS Instruction Format Il (2)

Spring 2010 © UCB

Outline

* Disassembly
 Pseudoinstructions

* “True” Assembly Language (TAL) vs.
“MIPS” Assembly Language (MAL)

@ CS61C L17 MIPS Instruction Format I (3) Spring 2010 © UCB

Decoding Machine Language

 How do we convert 1s and 0Os to
assembly language and to C code?

Machine language = assembly = C?

e For each 32 bhits:

1. Look at c‘>}>code to distinquish between R-
Format, J-Format, and |-Format.

2. Use instruction format to determine which
fields exist.

3. Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.

4. LoFicaIIy convert this MIPS code into
valid C code. Always possible? Unique?

@ CS61C L17 MIPS Instruction Format Il (4) Spring 2010 © UCB

Decoding Example (1/7)

* Here are six machine language
instructions Iin hexadecimal:

00001025, __
00054023, __
11000003

00441020
20A5FFFF
08100001

hex
hex
hex

hex

e Let the first instruction be at address
4,194,304, _, (0x00400000,_,).

* Next step: convert hex to binary

Q CS61C L17 MIPS Instruction Format Il (5) Spring 2010 © UCB

Decoding Example (2/7)

* The six machine language instructions in
binary:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
001000001010010111111117111111111
00001000000100000000000000000001

* Next step: identify opcode and format

R 0 rs rt rd I[shamt| funct
|1 1,4-62 rs rt immediate
J[2or3 target address

Q CS61C L17 MIPS Instruction Format Il (6) Spring 2010 © UCB

Decoding Example (3/7)
e Select the opcode (first 6 bits)

to determine the format:

Format:

R

R
I
R
I
J

00000000000000000001000000
00000000000/0010101000/00000
000100/01000/000000000000000

100101
101010
000011

00000000010/00100/0001000000

100000

00100000101/001011111111111

111111

00001000000100000000000000

000001

Gf

Look at opcode:

0 means R-Format,

2 or 3 mean J-Format,
otherwise I-Format.

Next step: separation of fields

CS61C L17 MIPS Instruction Format Il (7)

Spring 2010 © UCB

Decoding Example (4/7)

 Fields separated based on format/opcode:

Format:

R 0 0 0 2 0 37

R —
| 4 8 0 +3

R 0 2 4 2 0 32

| 8 5 5 -1

J 2 1,048,577

* Next step: translate (“disassemble”) to
MIPS assembly instructions

Q CS61C L17 MIPS Instruction Format Il (8)

Spring 2010 © UCB

Decoding Example (5/7)

 MIPS Assembly (Part 1):

Address:

0x00400000
0x00400004
0x00400008
0x0040000c
0x00400010
0x00400014

Assembly instructions:

or
slt
beq
add
addi
J

$2,%0,50
$8,$0,$5
$8,$0,3

$2,52,54
$5/$51_1
0x100001

e Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

@ CS61C L17 MIPS Instruction Format Il (9)

Spring 2010 © UCB

Decoding Example (6/7)

 MIPS Assembly (Part 2):

or $v0,$0,S$0
Loop: slt $t0,$0,$al
beq $t0,$0,Exit
add Sv0,S$v0, $al
addi $al,$al,-1
J Loop
Exit:

* Next step: translate to C code
(must be creative!)

CS61C L17 MIPS Instruction Format Il (10)

Spring 2010 © UCB

Decoding Example (7/7)

Before Hex: « After C code (Mapping below)
$v0: product

00001025, , $a0: multiplicand
00054024, _, $al: multiplier
11000003

hex product = 0;

gg:g;‘,ggghex while (multiplier > 0) {
hex product += multiplicand;
08100001,, multiplier -= 1;

}
or $v0,$0,50
Loop: slt $t0,%0,3%al Demonstrated Big 61C
beq $t0,$0,Exit| |dea: Instructions are
add 5v0,5v0,%a0 | 1,5t numbers, code is

addi 3al,sal,-1 | peated like data
Loop

J
Exit:
Spring 2010 © UCB

Administrivia

 Midterm is Iin one week!
Monday @ 7-10pm in 1 Pimintel

- Old midterms online (link at top of page)
* Lectures and reading materials fair game
- Open book!

e Review sessionSat@ in

Q CS61C L17 MIPS Instruction Format Il (12) Spring 2010 © UCB

Review from before: 1ui
S0 how does 1lui help us?

- Example:
addi $t0,$t0, OxABABCDCD
becomes:
lui Sat, OxABAB
ori Sat, $at, O0xCDCD

add $t0,$t0, Sat

* Now each I-format instruction has only a 16-
bit immediate.

e Wouldn’t it be nice if the assembler
would this for us automatically?

* |f number too big, then just automatically
Cd replace addi with lui, ori, add

CS61C L17 MIPS Instruction Format Il (13) Spring 2010 © UCB

True Assembly Language (1/3)

* Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other MIPS
instructions

 What happens with pseudo-instructions?

* They’re broken up by the assembler into
several “real” MIPS instructions.

« Some examples follow

Q CS61C L17 MIPS Instruction Format Il (14) Spring 2010 © UCB

Example Pseudoinstructions

* Register Move
move reg2l,reqgl
Expands to:
add reg2,$zero,regl

e Load Immediate
1i reg,value
If value fits in 16 bits:
addi reg,$zero,value

else:
lui reg,upper 16 bits of value
ori reqg, Szero,lower 16 bits

Q CS61C L17 MIPS Instruction Format Il (15) Spring 2010 © UCB

Example Pseudoinstructions

*Load Address: How do we get the
address of an instruction or global
variable into a register?

la reqg,label
Again if value fits in 16 bits:
addi reg,$zero,label value

else:
lui reg,upper 16 bits of wvalue
ori reg, Szero,lower 16 bits

Q CS61C L17 MIPS Instruction Format Il (16) Spring 2010 © UCB

True Assembly Language (2/3)

 Problem:

* When breaking up a pseudo-instruction,
the assembler may need to use an extra

register

- If it uses any regular register, it’ll overwrite
whatever the program has put into it.

e Solution:

* Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.

- Since the assembler may use this at any
time, it’s not safe to code with it.

Q CS61C L17 MIPS Instruction Format Il (17) Spring 2010 © UCB

Example Pseudoinstructions

* Rotate Right Instruction
ror reg, value
Expands to:
srl Sat, reg, value NN
sll reg, reg, 32-value 0
or reg, reg, Sat NN

e “No OPeration” instruction
nop
Expands to instruction = 0,,,,,
sll $0, $0, O

@ CS61C L17 MIPS Instruction Format Il (18) Spring 2010 © UCB

Example Pseudoinstructions

 Wrong operation for operand
addu reg,reg,value # should be addiu

If value fits In 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui Sat,upper 16 bits of value
ori Sat,$at,lower 16 bits
addu reqg,reqg, $Sat
 How do we avoid confusion about whether

we are talking about MIPS assembler with
or without pseudoinstructions?

Q CS61C L17 MIPS Instruction Format Il (19) Spring 2010 © UCB

True Assembly Language (3/3)

* MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions

 TAL (True Assembly Language): set of
instructions that can actuallx get
translated into a single machine
language instruction (32-bit binary string)

* A program must be converted from MAL
into TAL before translation into 1s & 0s.

Q CS61C L17 MIPS Instruction Format Il (20) Spring 2010 © UCB

Questions on Pseudoinstructions

e Question:
 How does MIPS assembler / SPIM
recognize pseudo-instructions?
e Answer:

- It looks for officially defined pseudo-
instructions, such as ror and move

- It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

Q CS61C L17 MIPS Instruction Format Il (21) Spring 2010 © UCB

Rewrite TAL as MAL

TAL:

or Sv0,$0,$0
Loop: slt $t0,$0, Sal
beq $t0,S$0,Exit
add Sv0,$v0, $al
addi al,sal,-1
J Loop
Exit:

 This time convert to MAL

eIt’s OK for this exercise to
make up MAL instructions

Q CS61C L17 MIPS Instruction Format Il (22) Spring 2010 © UCB

Rewrite TAL as MAL (Answer)

TAL:

Loop:

Exit:

 MAL.:

Loop:

Exit:

or
slt
beq
add
addi
J

1i

ble
add
sub

J

Q CS61C L17 MIPS Instruction Format Il (23)

$v0,$80,50
$t0,80,5al
St0,S$0,Exit
Sv0,Sv0,Sa0l
$al,$al,-1
Loop

Sv0,0
Sal,S$Szero,Exit
Sv0,S$v0,Sa0
Sal,$al,l

Loop

Spring 2010 © UCB

Peer Instruction
e Which of the instructions below are
MAL and which are TAL?

1. addi $t0, $t1, 40000
2. beq $s0, 10, Exit

12
b) MT

c) T™M
d) TT

Q CS61C L17 MIPS Instruction Format Il (24) Spring 2010 © UCB

Peer Instruction Answer

e Which of the instructions below are
MAL and which are TAL?

1. addi $t0, $t1,{40000 40,000 > +32,767 =>1ui,ori

2. beq $SO,‘1 0, ‘Exit‘ Beq: both must be registers
Exit: if > 215, then MAL

[a)bllfbdz_:]

b) MT
c) T™M
d) TT

Q CS61C L17 MIPS Instruction Format Il (25) Spring 2010 © UCB

In Conclusion

* Disassembly is simple and starts by
decoding opcode field.

- Be creative, efficient when authoring C

 Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)

- Only TAL can be converted to raw binary
- Assembler’s job to do conversion

- Assembler uses reserved register Sat

- MAL makes it much easier to write MIPS

@ CS61C L17 MIPS Instruction Format Il (26) Spring 2010 © UCB

