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Outline

*Disassembly
*Pseudoinstructions

*“True” Assembly Language (TAL) vs.
“MIPS” Assembly Language (MAL)
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Decoding Example (1/7)

* Here are six machine language
instructions in hexadecimal:

00001025,
0005402A, _,
11000003,
00441020
20AS5FFFF,
08100001

hex
hex

hex

« Let the first instruction be at address
4,194,304, (0x00400000,_,).

*Next step: convert hex to binary
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Review

« MIPS Machine Language Instruction:
32 bits representing a single instruction

R‘ opcode| rs rt rd |shamt| funct |
| | opcode| rs rt immediate
J [ opcode target address

*Branches use PC-relative addressing,
Jumps use absolute addressing.
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Decoding Machine Language
¢« How do we convert 1s and 0s to
assembly language and to C code?

Machine language = assembly = C?

* For each 32 bits:

1. Look at opcode to distinquish between R-
Format, J-Format, and I-Format.

2. Use instruction format to determine which
fields exist.

3. Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.

4. Lo?ically convert this MIPS code into
valid C code. Always possible? Unique?
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Decoding Example (2/7)

* The six machine language instructions in
binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

« Next step: identify opcode and format
rd |shamﬂ_fu.nsLL

immediate |
20r3 target address

0 rs rt
1.4-62] rs rt
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Decoding Example (3/7)

« Select the opcode (first 6 bits)
to determine the format:
Format:

R| 000000p000000000p0010p0000R 00101
R 000000000000/00101/0100000000/101010
000100/01000000000000000000000011
Rl 000000[00010/0010000001000000100000
001000/00101001011111111111111111
J| 00001000000100000000000000000001

¢ Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.

@ Next step: separation of fields
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Decoding Example (5/7)

*MIPS Assembly (Part 1):

Address: Assembly instructions:
0x00400000 or $2,$0,%0
0x00400004 slt $8,50,85
0x00400008 beq $8,50,3
0x0040000c add $2,$2,%4
0x00400010 addi $5,$85,-1
0x00400014 3j 0x100001

 Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jJump and add labels, registers)
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Decoding Example (7/7)

Before Hex: < After C code (Mapping below)
$vO0: product

00001025, $a0: multiplicand
0005402a,, $al: multiplier
11000003, ,

product = 0;
Sorsro20hex  while (multiplier > 0) {
hex product += multiplicand;
08100001,,, multiplier -= 1;

or $v0,$0,50
Loop: slt $t0,%0,%al Demonstrated Big 61C

beq $t0,$0,Exit| |dea: Instructions are

add  $v0,$v0,%a0| st numbers, code is

addi $al,%al,-1 | poated like data

j Loop
Exit:
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Decoding Example (4/7)

*Fields separated based on format/opcode:
Format:

R 0 0 0 2 0 37
R 0 0 5 8 0 42
I 4 8 0 +3

R[ o 2 4 2 | o | 32
1 8 5 5 -1

J 2 1,048,577

*Next step: translate (“disassemble”) to
MIPS assembly instructions
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Decoding Example (6/7)

*MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,%al
beq $t0,$0,Exit
add $v0,$v0,$al
addi $al,$al,-1
3j Loop
Exit:

*Next step: translate to C code
(must be creative!)
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Review from before: 1ui
*So how does 1ui help us?

+ Example:
addi $t0,$t0, OxABABCDCD
becomes:
lui $at, OxABAB
ori $at, $at, 0xCDCD

add $t0,$t0, Sat
+ Now each I-format instruction has only a 16-
bit immediate.
*Wouldn’t it be nice if the assembler
would this for us automatically?
= If number too big, then just automatically

Q( replace addi with lui, ori, add
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True Assembly Language (1/3)

e Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
!an?ua e instruction, but into other MIPS
instructions

* What happens with pseudo-instructions?

* They’re broken up by the assembler into
several “real” MIPS instructions.

» Some examples follow
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Example Pseudoinstructions

*Register Move
move reg2,regl
Expands to:
add reg2,$zero,regl
*Load Immediate
1i reg,value

If value fits in 16 bits:
addi reg,$zero,value

else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits
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Example Pseudoinstructions

*Load Address: How do we get the
address of an instruction or global
variable into a register?

la reg,label

Again if value fits in 16 bits:

addi reg,$zero,label value

else:

lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

Q CS61C L17 MIPS Instruction Format il (16) Spring 2010 © UCB

True Assembly Language (2/3)

*Problem:

* When breaking up a pseudo-instruction,
the assembler may need to use an extra
register

«If it uses any regular register, it’'ll overwrite
whatever the program has put into it.
*Solution:

* Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.

- Since the assembler may use this at any
time, it’s not safe to code with it.
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Example Pseudoinstructions

* Rotate Right Instruction

ror reg, value W
Expands to:

srl $at, reg, value [0 Y
sll reg, reg, 32-value
or reg, reg, $at AN

*“No OPeration” instruction
nop
Expands to instruction = 0,,,,,
sll $0, $0, O
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Example Pseudoinstructions

*Wrong operation for operand
addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu regq,reg, $at
«How do we avoid confusion about whether

we are talking about MIPS assembler with
or without pseudoinstructions?
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True Assembly Language (3/3)

«MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions

*TAL (True Assembly Language): set of
instructions that can actuallg get
translated into a single machine
language instruction (32-bit binary string)

« A program must be converted from MAL
into TAL before translation into 1s & 0s.
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Rewrite TAL as MAL

*TAL:

or $v0,$0,$0
Loop: slt $t0,$0,8al
beq $t0,$0,Exit
add $v0,$v0, $al
addi $al,$al,-1
3j Loop
Exit:

*This time convert to MAL

«It’s OK for this exercise to
make up MAL instructions

Questions on Pseudoinstructions

*Question:

+ How does MIPS assembler / SPIM
recognize pseudo-instructions?

* Answer:

* It looks for officially defined pseudo-
instructions, such as ror and move

* It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully
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Rewrite TAL as MAL (Answer)

*TAL: or $v0,%0,%0
Loop: slt $t0,$0,$al

beq $t0,$0,Exit

add $v0,$v0, $a0
addi $al,$al,-1

j Loop

Exit:

*MAL:

1i $v0,0

Loop: ble $al,$zero,Exit
add $v0,$v0,$a0
sub $al,$al,l
3j Loop

Exit:
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In Conclusion

*Disassembly is simple and starts by
decoding opcode field.

+ Be creative, efficient when authoring C
« Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)
+ Only TAL can be converted to raw binary
+ Assembler’s job to do conversion
« Assembler uses reserved register $at
+MAL makes it much easier to write MIPS
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