CS61C : Machine Structures

Lecture 17
Instruction Representation lll

2010-03-01

Lecturer SOE Dan Garcia

Hello to Sherif Kandel
listening from Egypt!

www .cs .berkeley.edu/~ddgarcia

Handling a mountain of data! =
Microsoft Live Labs has released a
tool to “make it easier to interact with
massive amounts of data in ways that are powerful,
informative and fun.” Imagine being able to look at
all of wikipedia or flickr and filter/query very easily. %EE

getpivot.com '

CS61C L17 MIPS Instruction Format il (1) Spring 2010 © UCB

Outline

*Disassembly
*Pseudoinstructions

*“True” Assembly Language (TAL) vs.
“MIPS” Assembly Language (MAL)

Q CS61C L17 MIPS Instruction Format il (3) Spring 2010 © UCB

Decoding Example (1/7)

* Here are six machine language
instructions in hexadecimal:

00001025,
0005402A, _,
11000003,
00441020
20AS5FFFF,
08100001

hex
hex

hex

« Let the first instruction be at address
4,194,304, (0x00400000,_,).

*Next step: convert hex to binary

@ CSB1C L17 MIPS Instruction Format il (5) Spring 2010 © UCB

Review

« MIPS Machine Language Instruction:
32 bits representing a single instruction

R‘ opcode| rs rt rd |shamt| funct |
| | opcode| rs rt immediate
J [opcode target address

*Branches use PC-relative addressing,
Jumps use absolute addressing.

ﬂ CS61C L17 MIPS Instruction Format il (2) Spring 2010 © UCB

Decoding Machine Language
¢« How do we convert 1s and 0s to
assembly language and to C code?

Machine language = assembly = C?

* For each 32 bits:

1. Look at opcode to distinquish between R-
Format, J-Format, and I-Format.

2. Use instruction format to determine which
fields exist.

3. Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.

4. Lo?ically convert this MIPS code into
valid C code. Always possible? Unique?

@ CS1C L17 MIPS Instruction Format il (4) Spring 2010 © UCB

Decoding Example (2/7)

* The six machine language instructions in
binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

« Next step: identify opcode and format
rd |shamﬂ_fu.nsLL

immediate |
20r3 target address

0 rs rt
1.4-62] rs rt

ﬂ CSB1C L17 MIPS Instruction Format il (6) Spring 2010 © UCB

Decoding Example (3/7)

« Select the opcode (first 6 bits)
to determine the format:
Format:

R| 000000p000000000p0010p0000R 00101
R 000000000000/00101/0100000000/101010
000100/01000000000000000000000011
Rl 000000[00010/0010000001000000100000
001000/00101001011111111111111111
J| 00001000000100000000000000000001

¢ Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.

@ Next step: separation of fields

CS61C L17 MIPS Instruction Format il (7) Spring 2010 © UCB

Decoding Example (5/7)

*MIPS Assembly (Part 1):

Address: Assembly instructions:
0x00400000 or $2,$0,%0
0x00400004 slt $8,50,85
0x00400008 beq $8,50,3
0x0040000c add $2,$2,%4
0x00400010 addi $5,$85,-1
0x00400014 3j 0x100001

 Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jJump and add labels, registers)

Q CS61C L17 MIPS Instruction Format il (9)

Spring 2010 © UCB

Decoding Example (7/7)

Before Hex: < After C code (Mapping below)
$vO0: product

00001025, $a0: multiplicand
0005402a,, $al: multiplier
11000003, ,

product = 0;
Sorsro20hex while (multiplier > 0) {
hex product += multiplicand;
08100001,,, multiplier -= 1;

or $v0,$0,50
Loop: slt $t0,%0,%al Demonstrated Big 61C

beq $t0,$0,Exit| |dea: Instructions are

add $v0,$v0,%a0| st numbers, code is

addi $al,%al,-1 | poated like data

j Loop
Exit:

Spring 2010 © UCB

Decoding Example (4/7)

*Fields separated based on format/opcode:
Format:

R 0 0 0 2 0 37
R 0 0 5 8 0 42
I 4 8 0 +3

R[o 2 4 2 | o | 32
1 8 5 5 -1

J 2 1,048,577

*Next step: translate (“disassemble”) to
MIPS assembly instructions

ﬂ €S61C L17 MIPS Instruction Format IIl (8)

Spring 2010 © UCB

Decoding Example (6/7)

*MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,%al
beq $t0,$0,Exit
add $v0,$v0,$al
addi $al,$al,-1
3j Loop
Exit:

*Next step: translate to C code
(must be creative!)

CS61C L17 MIPS Instruction Format il (10) Spring 2010 © UCB

Review from before: 1ui
*So how does 1ui help us?

+ Example:
addi $t0,$t0, OxABABCDCD
becomes:
lui $at, OxABAB
ori $at, $at, 0xCDCD

add $t0,$t0, Sat
+ Now each I-format instruction has only a 16-
bit immediate.
*Wouldn’t it be nice if the assembler
would this for us automatically?
= If number too big, then just automatically

Q(replace addi with lui, ori, add

CS61C L17 MIPS Instruction Format il (13) Spring 2010 © UCB

True Assembly Language (1/3)

e Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
!an?ua e instruction, but into other MIPS
instructions

* What happens with pseudo-instructions?

* They’re broken up by the assembler into
several “real” MIPS instructions.

» Some examples follow

ﬂ CS61C L17 MIPS Instruction Format il (14) Spring 2010 © UCB

Example Pseudoinstructions

*Register Move
move reg2,regl
Expands to:
add reg2,$zero,regl
*Load Immediate
1i reg,value

If value fits in 16 bits:
addi reg,$zero,value

else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

ﬂ CS61C L17 MIPS Instruction Format il (15) Spring 2010 © UCB

Example Pseudoinstructions

*Load Address: How do we get the
address of an instruction or global
variable into a register?

la reg,label

Again if value fits in 16 bits:

addi reg,$zero,label value

else:

lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

Q CS61C L17 MIPS Instruction Format il (16) Spring 2010 © UCB

True Assembly Language (2/3)

*Problem:

* When breaking up a pseudo-instruction,
the assembler may need to use an extra
register

«If it uses any regular register, it’'ll overwrite
whatever the program has put into it.
*Solution:

* Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.

- Since the assembler may use this at any
time, it’s not safe to code with it.

@ CS1C L17 MIPS Instruction Format il (17) Spring 2010 © UCB

Example Pseudoinstructions

* Rotate Right Instruction

ror reg, value W
Expands to:

srl $at, reg, value [0 Y
sll reg, reg, 32-value
or reg, reg, $at AN

*“No OPeration” instruction
nop
Expands to instruction = 0,,,,,
sll $0, $0, O

ﬂ CS61C L17 MIPS Instruction Format il (18) Spring 2010 © UCB

Example Pseudoinstructions

*Wrong operation for operand
addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu regq,reg, $at
«How do we avoid confusion about whether

we are talking about MIPS assembler with
or without pseudoinstructions?

CS61C L17 MIPS Instruction Format il (19) Spring 2010 © UCB

True Assembly Language (3/3)

«MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions

*TAL (True Assembly Language): set of
instructions that can actuallg get
translated into a single machine
language instruction (32-bit binary string)

« A program must be converted from MAL
into TAL before translation into 1s & 0s.

ﬂ CS61C L17 MIPS Instruction Format il (20) Spring 2010 © UCB

Rewrite TAL as MAL

*TAL:

or $v0,$0,$0
Loop: slt $t0,$0,8al
beq $t0,$0,Exit
add $v0,$v0, $al
addi $al,$al,-1
3j Loop
Exit:

*This time convert to MAL

«It’s OK for this exercise to
make up MAL instructions

Questions on Pseudoinstructions

*Question:

+ How does MIPS assembler / SPIM
recognize pseudo-instructions?

* Answer:

* It looks for officially defined pseudo-
instructions, such as ror and move

* It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

ﬂ CS61C L17 MIPS Instruction Format il (21)

Spring 2010 © UCB

Rewrite TAL as MAL (Answer)

*TAL: or $v0,%0,%0
Loop: slt $t0,$0,$al

beq $t0,$0,Exit

add $v0,$v0, $a0
addi $al,$al,-1

j Loop

Exit:

*MAL:

1i $v0,0

Loop: ble $al,$zero,Exit
add $v0,$v0,$a0
sub $al,$al,l
3j Loop

Exit:

CS61C L17 MIPS Instruction Format il (22) Spring 2010 © UCB

@ CS1C L17 MIPS Instruction Format il (23)

Spring 2010 © UCB

In Conclusion

*Disassembly is simple and starts by
decoding opcode field.

+ Be creative, efficient when authoring C
« Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)
+ Only TAL can be converted to raw binary
+ Assembler’s job to do conversion
« Assembler uses reserved register $at
+MAL makes it much easier to write MIPS

ﬂ CS61C L17 MIPS Instruction Format il (26) Spring 2010 © UCB

