
CS61C L16 Floating Point II (1) Greenbaum, Spring 2010 © UCB

TA Michael Greenbaum
www.cs.berkeley.edu/~cs61c-tf

inst.eecs.berkeley.edu/~cs61c

UC Berkeley CS61C : Machine Structures

Lecture 16
Floating Point II

2010-02-26

“Research without Google would be
like life without electricity”

“A Nature News survey of Chinese scientists found
that 84 percent of them thought losing access to
Google would “somewhat or significantly” hurt their
work process. Like their American counterparts,
Chinese researchers use Google and Google Scholar
to find papers and related information.

http://www.wired.com/wiredscience/2010/02/china-scientists-google/

CS61C L16 Floating Point II (2) Greenbaum, Spring 2010 © UCB

Review
 Floating Point lets us:

 Represent numbers containing both integer and fractional parts;

makes efficient use of available bits.

 Store approximate values for very large and very small #s.

 IEEE 754 Floating Point Standard is most widely accepted attempt

to standardize interpretation of such numbers (Every desktop or

server computer sold since ~1997 follows these conventions)

Summary (single precision):

031
S Exponent
30 23 22

Significand

1 bit 8 bits 23 bits

(-1)S x (1 + Significand) x 2(Exponent-127)

Double precision identical, except with exponent bias of

1023 (half, quad similar)

Exponent tells Significand how much (2i)

to count by (…, 1/4, 1/2, 1, 2, …)

CS61C L16 Floating Point II (3) Greenbaum, Spring 2010 © UCB

“Father” of the Floating point standard

IEEE Standard

754 for Binary

Floating-Point

Arithmetic.

www.cs.berkeley.edu/~wkahan/

…/ieee754status/754story.html

Prof. Kahan
1989 ACM Turing

Award Winner!

CS61C L16 Floating Point II (4) Greenbaum, Spring 2010 © UCB

Precision and Accuracy

Precision is a count of the number bits in a computer word

used to represent a value.

Accuracy is a measure of the difference between the actual

value of a number and its computer representation.

Don’t confuse these two terms!

High precision permits high accuracy but doesn’t

guarantee it. It is possible to have high precision

but low accuracy.

Example: float pi = 3.14;

pi will be represented using all 24 bits of the

significant (highly precise), but is only an
approximation (not accurate).

CS61C L16 Floating Point II (5) Greenbaum, Spring 2010 © UCB

Representation for ± ∞

 In FP, divide by 0 should produce ± ∞, not

overflow.

 Why?
 OK to do further computations with ∞ E.g., X/0 >

Y may be a valid comparison

 Ask math majors

 IEEE 754 represents ± ∞
 Most positive exponent reserved for ∞

 Significands all zeroes

CS61C L16 Floating Point II (6) Greenbaum, Spring 2010 © UCB

Representation for 0

 Represent 0?
 exponent all zeroes

 significand all zeroes

 What about sign? Both cases valid.
+0: 0 00000000 00000000000000000000000

-0: 1 00000000 00000000000000000000000

CS61C L16 Floating Point II (7) Greenbaum, Spring 2010 © UCB

Special Numbers

 What have we defined so far? (Single

Precision)
Exponent Significand Object

0 0 0

0 nonzero ???

1-254 anything +/- fl. pt. #

255 0 +/- ∞

255 nonzero ???

 Professor Kahan had clever ideas;

“Waste not, want not”
 We’ll talk about Exp=0,255 & Sig!=0 later

CS61C L16 Floating Point II (8) Greenbaum, Spring 2010 © UCB

Representation for Not a Number

 What do I get if I calculate
sqrt(-4.0)or 0/0?

 If ∞ not an error, these shouldn’t be either

 Called Not a Number (NaN)

 Exponent = 255, Significand nonzero

 Why is this useful?

 Hope NaNs help with debugging?

 They contaminate: op(NaN, X) = NaN

CS61C L16 Floating Point II (9) Greenbaum, Spring 2010 © UCB

Representation for Denorms (1/2)

 Problem: There’s a gap among

representable FP numbers around 0
 Smallest representable pos num:

a = 1.0… 2 * 2-126 = 2-126

 Second smallest representable pos num:

b = 1.000……1 2 * 2-126

= (1 + 0.00…12) * 2
-126

= (1 + 2-23) * 2-126

= 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149
b

a0
+-

Gaps!

Normalization and

implicit 1

is to blame!

CS61C L16 Floating Point II (10) Greenbaum, Spring 2010 © UCB

Representation for Denorm (2/2)

 Solution:
 We still haven’t used Exponent=0,

Significand nonzero

 Denormalized number: no (implied) leading 1,

implicit exponent = -126

 Smallest representable pos num:

 A = 2-149

 Second smallest representable pos num:

 b = 2-148

0
+-

CS61C L16 Floating Point II (11) Greenbaum, Spring 2010 © UCB

Special Numbers Summary

 Reserve exponents, significands:

Exponent Significand Object

0 0 0

0 nonzero Denorm

1-254 Anything +/- fl. Pt #

255 0 +/- ∞

255 nonzero NaN

CS61C L16 Floating Point II (12) Greenbaum, Spring 2010 © UCB

Rounding

 When we perform math on real numbers, we

have to worry about rounding to fit the result

in the significant field.

 The FP hardware carries two extra bits of

precision, and then round to get the proper

value

 Rounding also occurs when converting:
double to a single precision value, or

floating point number to an integer

CS61C L16 Floating Point II (13) Greenbaum, Spring 2010 © UCB

IEEE FP Rounding Modes

 Halfway between two floating point values (rounding bits read
10)? Choose from the following:

 Round towards + ∞
 Round “up”: 1.01 10  1.10 , -1.01 10  -1.01

 Round towards - ∞
 Round “down”: 1.01 10  1.01, -1.01 10  -1.10

 Truncate
 Just drop the extra bits (round towards 0)

 Unbiased (default mode). Round to nearest EVEN number
 Half the time we round up on tie, the other half time we round

down. Tends to balance out inaccuracies.

 In binary, even means least significant bit is 0.

 Otherwise, not halfway (00, 01, 11)! Just round to the
nearest float.

CS61C L16 Floating Point II (14) Greenbaum, Spring 2010 © UCB

Peer Instruction

1. Converting float -> int -> float�produces
same float number

2. Converting int -> float -> int produces same
int number

3. FP add is associative:
(x+y)+z = x+(y+z)

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF

CS61C L16 Floating Point II (15) Greenbaum, Spring 2010 © UCB

Peer Instruction Answer

1. Converting float -> int -> float�produces same float number

2. Converting int -> float -> int produces same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

1. 3.14 -> 3 -> 3

2. 32 bits for signed int,
but 24 for FP mantissa?

3. x = biggest pos #,
y = -x, z = 1 (x != inf)

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF

F A L S E
F A L S E
F A L S E

CS61C L16 Floating Point II (16) Greenbaum, Spring 2010 © UCB

Peer Instruction

 Let f(1,2) = # of floats between 1 and 2

 Let f(2,3) = # of floats between 2 and 3

1: f(1,2) < f(2,3)
2: f(1,2) = f(2,3)
3: f(1,2) > f(2,3)

CS61C L16 Floating Point II (17) Greenbaum, Spring 2010 © UCB

Peer Instruction Answer

 Let f(1,2) = # of floats between 1 and 2

 Let f(2,3) = # of floats between 2 and 3

1: f(1,2) < f(2,3)
2: f(1,2) = f(2,3)
3: f(1,2) > f(2,3)0

+-

CS61C L16 Floating Point II (18) Greenbaum, Spring 2010 © UCB

“And in conclusion…”

 Reserve exponents, significands:

 4 Rounding modes (default: unbiased)

 MIPS Fl ops complicated, expensive

Exponent Significand Object

0 0 0

0 nonzero Denorm

1-254 Anything +/- fl. Pt #

255 0 +/- ∞

255 nonzero NaN

CS61C L16 Floating Point II (19) Greenbaum, Spring 2010 © UCB

Bonus slides

 These are extra slides that used to be included in

lecture notes, but have been moved to this, the

“bonus” area to serve as a supplement.

 The slides will appear in the order they would

have in the normal presentation

CS61C L16 Floating Point II (20) Greenbaum, Spring 2010 © UCB

FP Addition

 More difficult than with integers

 Can’t just add significands

 How do we do it?
 De-normalize to match exponents

 Add significands to get resulting one

 Keep the same exponent

 Normalize (possibly changing exponent)

 Note: If signs differ, just perform a subtract

instead.

CS61C L16 Floating Point II (21) Greenbaum, Spring 2010 © UCB

MIPS Floating Point Architecture (1/4)

 MIPS has special instructions for floating
point operations:
 Single Precision:

add.s, sub.s, mul.s, div.s

 Double Precision:
add.d, sub.d, mul.d, div.d

 These instructions are far more
complicated than their integer
counterparts. They require special
hardware and usually they can take much
longer to compute.

CS61C L16 Floating Point II (22) Greenbaum, Spring 2010 © UCB

MIPS Floating Point Architecture (2/4)

 Problems:
 It’s inefficient to have different instructions take

vastly differing amounts of time.

 Generally, a particular piece of data will not

change from FP to int, or vice versa, within a

program. So only one type of instruction will be

used on it.

 Some programs do no floating point

calculations

 It takes lots of hardware relative to integers to

do Floating Point fast

CS61C L16 Floating Point II (23) Greenbaum, Spring 2010 © UCB

MIPS Floating Point Architecture (3/4)

 1990 Solution: Make a completely separate

chip that handles only FP.

 Coprocessor 1: FP chip
 contains 32 32-bit registers: $f0, $f1, …

 most registers specified in .s and .d instruction

refer to this set

 separate load and store: lwc1 and swc1

(“load word coprocessor 1”, “store …”)

 Double Precision: by convention, even/odd pair
contain one DP FP number: $f0/$f1, $f2/$f3, …

, $f30/$f31

CS61C L16 Floating Point II (24) Greenbaum, Spring 2010 © UCB

MIPS Floating Point Architecture (4/4)

 1990 Computer actually contains multiple

separate chips:
 Processor: handles all the normal stuff

 Coprocessor 1: handles FP and only FP;

 more coprocessors?… Yes, later

 Today, cheap chips may leave out FP HW

 Instructions to move data between main

processor and coprocessors:
 mfc0, mtc0, mfc1, mtc1, etc.

 Appendix pages A-70 to A-74 contain

many, many more FP operations.

CS61C L16 Floating Point II (25) Greenbaum, Spring 2010 © UCB

Example: Representing 1/3 in MIPS

 1/3
= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + …

= 1/4 + 1/16 + 1/64 + 1/256 + …

= 2-2 + 2-4 + 2-6 + 2-8 + …

= 0.0101010101… 2 * 2
0

= 1.0101010101… 2 * 2-2

 Sign: 0

 Exponent = -2 + 127 = 125 = 01111101

 Significand = 0101010101…

0 0111 1101 0101 0101 0101 0101 0101 010

CS61C L16 Floating Point II (26) Greenbaum, Spring 2010 © UCB

Casting floats to ints and vice versa

(int) floating_point_expression

Coerces and converts it to the nearest integer (C

uses truncation)

i = (int) (3.14159 * f);

(float) integer_expression

converts integer to nearest floating point

f = f + (float) i;

CS61C L16 Floating Point II (27) Greenbaum, Spring 2010 © UCB

int  float  int

 Will not always print “true”

 Most large values of integers don’t have

exact floating point representations!

 What about double?

if (i == (int)((float) i)) {

printf(“true”);

}

CS61C L16 Floating Point II (28) Greenbaum, Spring 2010 © UCB

float  int  float

 Will not always print “true”

 Small floating point numbers (<1) don’t

have integer representations

 For other numbers, rounding errors

if (f == (float)((int) f)) {

printf(“true”);

}

CS61C L16 Floating Point II (29) Greenbaum, Spring 2010 © UCB

Floating Point Fallacy

 FP add associative: FALSE!
 x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0

 x + (y + z) = –1.5x1038 + (1.5x1038 + 1.0)

= –1.5x1038 + (1.5x1038) = 0.0

 (x + y) + z = (–1.5x1038 + 1.5x1038) + 1.0

= (0.0) + 1.0 = 1.0

 Therefore, Floating Point add is not

associative!
 Why? FP result approximates real result!

 This example: 1.5 x 1038 is so much larger than 1.0

that 1.5 x 1038 + 1.0 in floating point representation

is still 1.5 x 1038

