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“Research without Google would be 
like life without electricity”

“A Nature News survey of Chinese scientists found 
that 84 percent of them thought losing access to 
Google would “somewhat or significantly” hurt their 
work process. Like their American counterparts, 
Chinese researchers use Google and Google Scholar 
to find papers and related information.

http://www.wired.com/wiredscience/2010/02/china-scientists-google/
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Review
 Floating Point lets us:

 Represent numbers containing both integer and fractional parts; 

makes efficient use of available bits.

 Store approximate values for very large and very small #s.

 IEEE 754 Floating Point Standard is most widely accepted attempt 

to standardize interpretation of such numbers (Every desktop or 

server computer sold since ~1997 follows these conventions)

Summary (single precision):

031
S Exponent
30 23 22

Significand

1 bit 8 bits 23 bits

(-1)S x (1 + Significand) x 2(Exponent-127)

Double precision identical, except with exponent bias of 

1023 (half, quad similar)

Exponent tells Significand how much (2i) 

to count by (…, 1/4, 1/2, 1, 2, …)
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“Father” of the Floating point standard

IEEE Standard 

754 for Binary 

Floating-Point 

Arithmetic.

www.cs.berkeley.edu/~wkahan/

…/ieee754status/754story.html

Prof. Kahan
1989 ACM Turing

Award Winner!
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Precision and Accuracy

Precision is a count of the number bits in a computer word 

used to represent a value.

Accuracy is a measure of the difference between the actual 

value of a number and its computer representation.

Don’t confuse these two terms!

High precision permits high accuracy but doesn’t 

guarantee it.  It is possible to have high precision

but low accuracy. 

Example: float pi = 3.14;

pi will be represented using all 24 bits of the 

significant (highly precise), but is only an 
approximation (not accurate).  
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Representation for ± ∞

 In FP, divide by 0 should produce ± ∞, not 

overflow.

 Why?
 OK to do further computations with ∞ E.g.,  X/0  >  

Y may be a valid comparison

 Ask math majors

 IEEE 754 represents ± ∞
 Most positive exponent reserved for ∞

 Significands all zeroes
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Representation for 0

 Represent 0?
 exponent all zeroes

 significand all zeroes

 What about sign?  Both cases valid.
+0: 0 00000000 00000000000000000000000

-0: 1 00000000 00000000000000000000000
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Special Numbers

 What have we defined so far? (Single 

Precision)
Exponent Significand Object

0 0 0

0 nonzero ???

1-254 anything +/- fl. pt. #

255 0 +/- ∞

255 nonzero ???

 Professor Kahan had clever ideas; 

“Waste not, want not”
 We’ll talk about Exp=0,255 & Sig!=0  later
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Representation for Not a Number

 What do I get if I calculate
sqrt(-4.0)or 0/0?

 If ∞ not an error, these shouldn’t be either

 Called Not a Number (NaN)

 Exponent = 255, Significand nonzero

 Why is this useful?

 Hope NaNs help with debugging?

 They contaminate: op(NaN, X) = NaN
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Representation for Denorms (1/2)

 Problem: There’s a gap among 

representable FP numbers around 0
 Smallest representable pos num:

a = 1.0… 2 * 2-126 = 2-126

 Second smallest representable pos num:

b = 1.000……1 2 * 2-126

= (1 + 0.00…12) * 2
-126

= (1 + 2-23) * 2-126

= 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149
b

a0
+-

Gaps!

Normalization and 

implicit 1

is to blame!
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Representation for Denorm (2/2)

 Solution:
 We still haven’t used Exponent=0, 

Significand nonzero

 Denormalized number: no (implied) leading 1, 

implicit exponent = -126

 Smallest representable pos num:

 A = 2-149

 Second smallest representable pos num:

 b = 2-148

0
+-
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Special Numbers Summary

 Reserve exponents, significands:

Exponent Significand Object

0 0 0

0 nonzero Denorm

1-254 Anything +/- fl. Pt #

255 0 +/- ∞

255 nonzero NaN
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Rounding

 When we perform math on real numbers, we 

have to worry about rounding to fit the result 

in the significant field.

 The FP hardware carries two extra bits of 

precision, and then round to get the proper 

value

 Rounding also occurs when converting:
double to a single precision value, or

floating point number to an integer
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IEEE FP Rounding Modes

 Halfway between two floating point values (rounding bits read 
10)? Choose from the following:

 Round towards + ∞
 Round “up”:   1.01 10  1.10 , -1.01 10  -1.01

 Round towards - ∞
 Round “down”: 1.01 10  1.01, -1.01 10  -1.10

 Truncate
 Just drop the extra bits (round towards 0)

 Unbiased (default mode). Round to nearest EVEN number
 Half the time we round up on tie, the other half time we round 

down. Tends to balance out inaccuracies.

 In binary, even means least significant bit is 0.

 Otherwise, not halfway (00, 01, 11)! Just round to the 
nearest float.
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Peer Instruction

1. Converting float -> int -> float�produces 
same float number

2. Converting int -> float -> int produces same 
int number

3. FP add is associative:
(x+y)+z = x+(y+z)

ABC
1: FFF
2: FFT 
3: FTF
4: FTT
5: TFF
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Peer Instruction Answer

1. Converting float -> int -> float�produces same float number

2. Converting int -> float -> int produces same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

1. 3.14 -> 3 -> 3

2. 32 bits for signed int,
but 24 for FP mantissa?

3. x = biggest pos #,
y = -x, z = 1 (x != inf)

ABC
1: FFF
2: FFT 
3: FTF
4: FTT
5: TFF

F A L S E
F A L S E
F A L S E
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Peer Instruction

 Let f(1,2) = # of floats between 1 and 2

 Let f(2,3) = # of floats between 2 and 3

1: f(1,2) < f(2,3)
2: f(1,2) = f(2,3)
3: f(1,2) > f(2,3)
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Peer Instruction Answer

 Let f(1,2) = # of floats between 1 and 2

 Let f(2,3) = # of floats between 2 and 3

1: f(1,2) < f(2,3)
2: f(1,2) = f(2,3)
3: f(1,2) > f(2,3)0

+-
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“And in conclusion…”

 Reserve exponents, significands:

 4 Rounding modes (default: unbiased)

 MIPS Fl ops complicated, expensive

Exponent Significand Object

0 0 0

0 nonzero Denorm

1-254 Anything +/- fl. Pt #

255 0 +/- ∞

255 nonzero NaN
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Bonus slides

 These are extra slides that used to be included in 

lecture notes, but have been moved to this, the 

“bonus” area to serve as a supplement.

 The slides will appear in the order they would 

have in the normal presentation
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FP Addition

 More difficult than with integers

 Can’t just add significands

 How do we do it?
 De-normalize to match exponents

 Add significands to get resulting one

 Keep the same exponent

 Normalize (possibly changing exponent)

 Note: If signs differ, just perform a subtract 

instead.
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MIPS Floating Point Architecture (1/4)

 MIPS has special instructions for floating 
point operations:
 Single Precision:

add.s, sub.s, mul.s, div.s

 Double Precision:
add.d, sub.d, mul.d, div.d

 These instructions are far more 
complicated than their integer 
counterparts.  They require special 
hardware and usually they can take much 
longer to compute.



CS61C L16 Floating Point II (22) Greenbaum, Spring 2010 © UCB

MIPS Floating Point Architecture (2/4)

 Problems:
 It’s inefficient to have different instructions take 

vastly differing amounts of time.

 Generally, a particular piece of data will not 

change from FP to int, or vice versa, within a 

program.  So only one type of instruction will be 

used on it.

 Some programs do no floating point 

calculations

 It takes lots of hardware relative to integers to 

do Floating Point fast
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MIPS Floating Point Architecture (3/4)

 1990 Solution: Make a completely separate 

chip that handles only FP.

 Coprocessor 1: FP chip
 contains 32 32-bit registers: $f0, $f1, …

 most registers specified in .s and .d instruction 

refer to this set

 separate load and store: lwc1 and swc1

(“load word coprocessor 1”, “store …”)

 Double Precision: by convention, even/odd pair 
contain one DP FP number: $f0/$f1, $f2/$f3, … 

, $f30/$f31
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MIPS Floating Point Architecture (4/4)

 1990 Computer actually contains multiple 

separate chips:
 Processor: handles all the normal stuff

 Coprocessor 1: handles FP and only FP; 

 more coprocessors?… Yes, later

 Today, cheap chips may leave out FP HW

 Instructions to move data between main 

processor and coprocessors:
 mfc0, mtc0, mfc1, mtc1, etc.

 Appendix pages A-70 to A-74 contain 

many, many more FP operations.
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Example: Representing 1/3 in MIPS

 1/3 
= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + … 

= 1/4 + 1/16 + 1/64 + 1/256 +  …

= 2-2 + 2-4 + 2-6 + 2-8 + …

= 0.0101010101… 2 * 2
0

= 1.0101010101… 2 * 2-2

 Sign: 0

 Exponent = -2 + 127 = 125 = 01111101

 Significand = 0101010101…

0 0111 1101 0101 0101 0101 0101 0101 010
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Casting floats to ints and vice versa

(int) floating_point_expression

Coerces and converts it to the nearest integer (C 

uses truncation)

i = (int) (3.14159 * f);

(float) integer_expression

converts integer to nearest floating point

f = f + (float) i;
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int  float  int

 Will not always print “true”

 Most large values of integers don’t have 

exact floating point representations!

 What about double?

if (i == (int)((float) i)) {

printf(“true”);

}
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float  int  float

 Will not always print “true”

 Small floating point numbers (<1) don’t 

have integer representations

 For other numbers, rounding errors

if (f == (float)((int) f)) {

printf(“true”);

}
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Floating Point Fallacy

 FP add associative: FALSE!
 x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0

 x + (y + z) = –1.5x1038 + (1.5x1038 + 1.0)

= –1.5x1038 + (1.5x1038) = 0.0

 (x + y) + z = (–1.5x1038 + 1.5x1038) + 1.0

= (0.0) + 1.0 = 1.0

 Therefore, Floating Point add is not 

associative!
 Why? FP result approximates real result!

 This example: 1.5 x 1038 is so much larger than 1.0 

that 1.5 x 1038 + 1.0 in floating point representation 

is still 1.5 x 1038


