
"Father" of the Floating point standard
IEEE Standard 754 for Binary Floating-Point Arithmetic.

Prof. Kahan

Review

- Floating Point lets us:
- Represent numbers containing both integer and fractional parts; makes efficient use of available bits.
- Store approximate values for very large and very small \#s.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers (Every desktop or server computer sold since ~ 1997 follows these conventions)

Precision and Accuracy

Precision is a count of the number bits in a computer word used to represent a value.
Accuracy is a measure of the difference between the actual value of a number and its computer representation.

High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
Example: float pi = 3.14;
pi will be represented using all 24 bits of the significant (highly precise), but is only an approximation (not accurate).
www.cs.berkeley.edu/~wkahan/
../ieee754status/754story.html

Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
- Why?
- OK to do further computations with ∞ E.g., X/O > Y may be a valid comparison
- Ask math majors
- IEEE 754 represents $\pm \infty$
- Most positive exponent reserved for ∞
- Significands all zeroes

Representation for 0

- Represent 0?
- exponent all zeroes
- significand all zeroes
- What about sign? Both cases valid.
+0: 0 0000000000000000000000000000000
-0: 100000000 00000000000000000000000

Special Numbers

- What have we defined so far? (Single Precision)

ExponentSignificand		
0	0	Object
0	nonzero	0
$1-254$	anything	???
255	0	$+/-$ fl. pt. \#
255	nonzero	+ ???

- Professor Kahan had clever ideas;
"Waste not, want not"
- We'll talk about Exp=0,255 \& Sig!=0 later

Representation for Not a Number

- What do I get if I calculate
sqre (-4.0) or $0 / 0$?
- If ∞ not an error, these shouldn't be either
- Called Not a Number (NaN)
- Exponent = 255, Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: op $(\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} * 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:

$$
\begin{aligned}
& \mathrm{b}=1.000 \ldots . . .1_{2} 2^{-126} \\
& =\left(1+0.00 \ldots 1_{2}\right) * 2^{-126} \quad \text { Normalization and } \\
& \begin{array}{ll}
=\left(1+22^{-23}\right) * 2^{-126} & \text { implicit } 1
\end{array} \\
& =2^{-126}+2^{-149} \quad \text { is to blame! } \\
& \begin{array}{l}
\mathrm{a}-0=2^{-126} \\
\mathrm{~b}-\mathrm{a}=2^{-149} \quad \text { Gaps! }
\end{array} \\
& -\infty \cdot \underset{0}{1} \bigcirc_{\mathbf{a}}^{\mathbf{b}}+\infty
\end{aligned}
$$

Representation for Denorm (2/2)

- Solution:
- We still haven't used Exponent=0, Significand nonzero
- Denormalized number: no (implied) leading 1, implicit exponent $=-126$
- Smallest representable pos num:

$$
\cdot A=2^{-149}
$$

- Second smallest representable pos num:

0

Rounding

- When we perform math on real numbers, we have to worry about rounding to fit the result in the significand field.
- The FP hardware carries two extra bits of precision, and then rounds to get the proper value
- Rounding also occurs when converting:
double to a single precision value, or floating point number to an integer

IEEE FP Rounding Modes

- Halfway between two floating point values (rounding bits read 10)? Choose from the following:
- Round towards $+\infty$
- Round "up": $1.01 \underline{10} \rightarrow 1.10,-1.01 \underline{10} \rightarrow-1.01$
- Round towards $-\infty$
- Round "down": $1.01 \underline{10} \rightarrow 1.01,-1.01 \underline{10} \rightarrow-1.10$
- Truncate
- Just drop the extra bits (round towards 0).
- Unbiased (default mode). Round to nearest EVEN number
- Half the time we round up on tie, the other half time we round down. Tends to balance out inaccuracies.
- In binary, even means least significant bit is 0 .
- Otherwise, not halfway $(00,01,11)$! Just round to the nearest float

Peer Instruction

1. Converting float -> int -> float produces same float number
2. Converting int -> float -> int produces same int number
3. FP add is associative:
$(x+y)+z=x+(y+z)$

ABC	
:	FFF
3:	FFT
4:	FTT
5:	TFF

. TFF

Peer Instruction

- Let $\mathrm{f}(1,2)=\#$ of floats between 1 and 2
- Let $f(2,3)=\#$ of floats between 2 and 3

1: $f(1,2)<f(2,3)$
2: $f(1,2)=f(2,3)$
3: $f(1,2)>f(2,3)$

"And in conclusion..."

- Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	$\underline{\text { nonzero }}$	$\underline{\text { Denorm }}$
$1-254$	Anything	$+/-\mathrm{fl}$. Pt \#
255	$\underline{0}$	$\underline{+/-\infty}$
255	$\underline{\text { nonzero }}$	$\underline{\mathrm{NaN}}$

- 4 Rounding modes (default: unbiased)
- MIPS FI ops complicated, expensive

Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the "bonus" area to serve as a supplement.
- The slides will appear in the order they would have in the normal presentation

FP Addition

- More difficult than with integers
- Can’t just add significands
- How do we do it?
- De-normalize to match exponents
- Add significands to get resulting one
- Keep the same exponent
- Normalize (possibly changing exponent)
- Note: If signs differ, just perform a subtract instead.

MIPS Floating Point Architecture (1/4)

- MIPS has special instructions for floating point operations:
- Single Precision:
add.s, sub.s, mul.s, div.s
- Double Precision: add.d, sub.d, mul.d, div.d
- These instructions are far more complicated than their integer counterparts. They require special hardware and usually they can take much longer to compute.

MIPS Floating Point Architecture (2/4)

- Problems:
- It's inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change from FP to int, or vice versa, within a program. So only one type of instruction will be used on it.
- Some programs do no floating point calculations
- It takes lots of hardware relative to integers to do Floating Point fast

MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.
- Coprocessor 1: FP chip
- contains 32 32-bit registers: $\$ \mathrm{f0}, \$ \mathrm{f} 1, \ldots$
- most registers specified in . s and .d instruction refer to this set
- separate load and store: 1wc1 and swc1 ("load word coprocessor 1", "store ...")
- Double Precision: by convention, even/odd pair contain one DP FP number: $\$ \mathrm{f} 0 / \$ \mathrm{f} 1, \$ \mathrm{f} 2 / \$ \mathrm{f} 3, \ldots$, \$f30/\$f31

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:
- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
-mfc0,mtc0,mfc1,mtc1, etc.
- Appendix pages A-70 to A-74 contain many, many more FP operations.

Example: Representing 1/3 in MIPS

- $1 / 3$

$$
=0.33333 \ldots 10
$$

$=0.25+0.0625+0.015625+0.00390625+.$.
$=1 / 4+1 / 16+1 / 64+1 / 256+\ldots$
$=2^{-2}+2^{-4}+2^{-6}+2^{-8}+\ldots$
$=0.0101010101 \ldots 2^{*} 2^{0}$
$=1.0101010101 \ldots 2^{*} 2^{-2}$

- Sign: 0
- Exponent $=-2+127=125=01111101$
- Significand $=0101010101$...

Casting floats to ints and vice versa
(int) floating_point_expression
Coerces and converts it to the nearest integer (C uses truncation)
$i=$ (int) (3.14159 * f);
(float) integer_expression
converts integer to nearest floating point
$\mathrm{f}=\mathrm{f}+(\mathrm{float}) \mathrm{i}$;

```
    int }->\mathrm{ float }->\mathrm{ int
if (i == (int)((float) i)) {
    printf("true");
}
```

- Will not always print "true"
- Most large values of integers don't have exact floating point representations!
- What about double?

```
float }->\mathrm{ int }->\mathrm{ float
if (f == (float)((int) f)) {
printf("true");
}
```

- Will not always print "true"
- Small floating point numbers (<1) don't have integer representations
- For other numbers, rounding errors

Floating Point Fallacy

- FP add associative: FALSE!
$-x=-1.5 \times 10^{38}, y=1.5 \times 10^{38}$, and $z=1.0$
$-x+(y+z)=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}+1.0\right)$
$=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}\right)=0.0$
$-(x+y)+z=\left(-1.5 \times 10^{38}+1.5 \times 10^{38}\right)+1.0$ $=(0.0)+1.0=\underline{1.0}$
- Therefore, Floating Point add is not associative!
- Why? FP result approximates real result!
- This example: 1.5×10^{38} is so much larger than 1.0 that $1.5 \times 10^{38}+1.0$ in floating point representation is still 1.5×10^{38}

