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! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia 

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 15  
Floating Point 

 2010-02-24!

Chatroulette site ⇒  
Random-pairing videochat, 

anonymously. Surreal. 
Watch for NC17 content. !

www.nytimes.com/2010/02/21/weekinreview/21bilton.html 

Hello to Robb Neuschwander  
listening from Louisville, KY!!
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Quote of the day!

“95% of the  
folks out there are  

completely clueless 
about floating-point.”!

! !James Gosling  
!Sun Fellow 
!Java Inventor  
!1998-02-28!
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Review of Numbers!

• Computers are made to deal with 
numbers!
• What can we represent in N bits?!

• 2N things, and no more! They could be…!
• Unsigned integers:!
! ! !0 !to !2N - 1!
(for N=32,  2N–1  = 4,294,967,295)!
• Signed Integers (Twoʼs Complement)!
! ! !-2(N-1)! !to !  2(N-1)  - 1!
(for N=32,  2(N-1)  = 2,147,483,648)!
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What about other numbers?!
1.  Very large numbers? !(seconds/millennium) 

 ⇒ 31,556,926,00010 (3.155692610 x 1010)!

2.  Very small numbers? (Bohr radius) 
 ⇒ 0.000000000052917710m (5.2917710 x 10-11) !

3.  Numbers with both integer & fractional parts? 
 ⇒ 1.5 !

First consider #3.  !

…our solution will also help with 1 and 2.!
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Representation of Fractions!
“Binary Point” like decimal point signifies 
boundary between integer and fractional parts:!

xx.yyyy!
21! 20! 2-1! 2-2! 2-3! 2-4!

Example 6-bit 
representation:!

10.10102 = 1x21 + 1x2-1 + 1x2-3 = 2.62510 !

If we assume “fixed binary point”, range of 6-bit 
representations with this format: !

! ! !0 to 3.9375 (almost 4)!
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Fractional Powers of 2!

0  1.0  1 
1   0.5  1/2 
2   0.25  1/4 
3   0.125  1/8 
4   0.0625  1/16 
5   0.03125  1/32 
6   0.015625 
7   0.0078125 
8   0.00390625 
9   0.001953125 
10   0.0009765625 
11   0.00048828125 
12   0.000244140625 
13   0.0001220703125 
14   0.00006103515625 
15   0.000030517578125 

i    2-i!
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Representation of Fractions with Fixed Pt.!
What about addition and multiplication?!

Addition is 
straightforward:!

  01.100  1.510 
+ 00.100  0.510 
  10.000  2.010 

Multiplication a bit more complex:!

         01.100  1.510 
     00.100  0.510  
     00 000 
    000 00 
   0110 0 
  00000 
 00000 
0000110000 

HI    LOW 
Whereʼs the answer, 0.11? (need to remember where point is)!
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Representation of Fractions!
So far, in our examples we used a “fixed” binary point 
what we really want is to “float” the binary point.  Why?!

Floating binary point most effective use of our limited bits (and 
thus more accuracy in our number representation):!

… 000000.001010100000…!

Any other solution would lose accuracy!!

example:  put 0.1640625 into binary.  Represent as in 
5-bits choosing where to put the binary point.!

Store these bits and keep track of the binary 
point 2 places to the left of the MSB!

With floating point rep., each numeral carries a exponent 
field recording the whereabouts of its binary point.  !

The binary point can be outside the stored bits, so very 
large and small numbers can be represented.!
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Scientific Notation (in Decimal)!

6.0210 x 1023!

radix (base)!decimal point!

mantissa! exponent!

• Normalized form: no leadings 0s  
(exactly one digit to left of decimal point)!
• Alternatives to representing 1/1,000,000,000!

• Normalized: !1.0 x 10-9!
• Not normalized: !0.1 x 10-8,10.0 x 10-10 !
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Scientific Notation (in Binary)!

1.0two x 2-1!

radix (base)!“binary point”!

exponent!

• Computer arithmetic that supports it 
called floating point, because it 
represents numbers where the binary 
point is not fixed, as it is for integers!

• Declare such variable in C as float!

mantissa!
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Floating Point Representation (1/2)!
• Normal format: +1.xxx…xtwo*2yyy…ytwo!
• Multiple of Word Size (32 bits)!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• S represents Sign ! ! !

!Exponent represents yʼs !!
!Significand represents xʼs!

• Represent numbers as small as  
2.0 x 10-38 to as large as 2.0 x 1038 !
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Floating Point Representation (2/2)!
• What if result too large? !

(> 2.0x1038 , < -2.0x1038 )!
• Overflow! ⇒ Exponent larger than represented in 8-

bit Exponent field!

• What if result too small? !
(>0 & < 2.0x10-38 , <0 & > -2.0x10-38 )!
• Underflow! ⇒ Negative exponent larger than 

represented in 8-bit Exponent field!

• What would help reduce chances of overflow 
and/or underflow?!

0! 2x10-38! 2x1038!1!-1! -2x10-38!-2x1038!

underflow! overflow!overflow!
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Double Precision Fl. Pt. Representation!
• Next Multiple of Word Size (64 bits)!

• Double Precision (vs. Single Precision)!
• C variable declared as double!
• Represent numbers almost as small as  
2.0 x 10-308 to almost as large as 2.0 x 10308 !

• But primary advantage is greater accuracy  
due to larger significand!

0!31!
S! Exponent!

30! 20!19!
Significand!

1 bit! 11 bits! 20 bits!
Significand (contʼd)!

32 bits!
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QUAD Precision Fl. Pt. Representation!
• Next Multiple of Word Size (128 bits)!

• Unbelievable range of numbers!
• Unbelievable precision (accuracy)!

• IEEE 754-2008 “binary128” standard!
• Has 15 exponent bits and 112 significand 
bits (113 precision bits)!

• Oct-Precision? !
• Some have tried, no real traction so far!

• Half-Precision? !
• Yep, “binary16”: 1/5/10!
en.wikipedia.org/wiki/Floating_point 
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Administrivia…Midterm in < 2 weeks!!

•  How should we study for the midterm?!
• Form study groups…donʼt prepare in isolation!!
• Attend the review session  

(Time/Location TBA)!
• Look over HW, Labs, Projects, class notes!!
• Go over old exams – HKN office has put them online 

(link from 61C home page)!
• Attend TA office hours and work out hard probs!
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IEEE 754 Floating Point Standard (1/3)!
Single Precision (DP similar):!

•  Sign bit:! !1 means negative ! !
! ! !0 means positive!

• Significand:!
• To pack more bits, leading 1 implicit for 

normalized numbers!
• 1 + 23 bits single, 1 + 52 bits double!
• always true: 0 < Significand < 1                             

(for normalized numbers)!
• Note: 0 has no leading 1, so reserve exponent 

value 0 just for number 0!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
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IEEE 754 Floating Point Standard (2/3)!

• IEEE 754 uses “biased exponent” 
representation. !
• Designers wanted FP numbers to be used 
even if no FP hardware; e.g., sort records with 
FP numbers using integer compares!

• Wanted bigger (integer) exponent field to 
represent bigger numbers. !

• 2ʼs complement poses a problem (because 
negative numbers look bigger)!

• Weʼre going to see that the numbers are 
ordered EXACTLY as in sign-magnitude!

  I.e., counting from binary odometer 00…00 up to 
11…11 goes from 0 to +MAX to -0 to -MAX to 0!
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IEEE 754 Floating Point Standard (3/3)!
• Called Biased Notation, where bias is 
number subtracted to get real number!
• IEEE 754 uses bias of 127 for single prec.!
• Subtract 127 from Exponent field to get 
actual value for exponent!

• 1023 is bias for double precision!
• Summary (single precision):!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with 
exponent bias of 1023 (half, quad similar)!
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“Father” of the Floating point standard!

IEEE Standard 754 
for Binary Floating-

Point Arithmetic.!

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html 

Prof. Kahan!
1989���

ACM Turing���
Award Winner!!
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Example: Converting Binary FP to Decimal!

• Sign: 0  positive!
• Exponent: !

• 0110 1000two = 104ten!
• Bias adjustment: 104 - 127 = -23!

• Significand:!
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +... 
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22  
= 1.0 + 0.666115!

0! 0110 1000! 101 0101 0100 0011 0100 0010!

• Represents: 1.666115ten*2-23 ~ 1.986*10-7 

!! !(about 2/10,000,000)!
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Example: Converting Decimal to FP!

1.  Denormalize: -23.40625!
2.  Convert integer part:!

23 = 16 + ( 7 = 4 + ( 3 = 2 + ( 1 ) ) )  =  101112!

3.  Convert fractional part:!
.40625 = .25 + ( .15625 = .125 + ( .03125 ) ) = .011012!

4.  Put parts together and normalize:!
10111.01101 = 1.011101101 x 24!

5.  Convert exponent:  127 + 4 = 100000112!

1! 1000 0011! 011 1011 0100 0000 0000 0000!

-2.340625 x 101!
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Peer Instruction!

What is the decimal equivalent 
of the floating pt # above?!

1! 1000 0001! 111 0000 0000 0000 0000 0000!
 a) -7 * 2^129 
b) -3.5 
c) -3.75 
d) -7 
e) -7.5 
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Peer Instruction Answer!
What is the decimal equivalent of:!

1! 1000 0001! 111 0000 0000 0000 0000 0000!
S! Exponent! Significand!
(-1)S x (1 + Significand) x 2(Exponent-127)!

(-1)1 x (1 + .111) x 2(129-127)!

  -1   x (1.111) x 2(2)!

-111.1!
-7.5!

 a) -7 * 2^129 
b) -3.5 
c) -3.75 
d) -7 
e) -7.5 
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“And in conclusion…”!
• Floating Point lets us:!

•  Represent numbers containing both integer and fractional 
parts; makes efficient use of available bits.!

•  Store approximate values for very large and very small #s.!

•  IEEE 754 Floating Point Standard is most widely 
accepted attempt to standardize interpretation of such 
numbers (Every desktop or server computer sold 
since ~1997 follows these conventions)!
• Summary (single precision):!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with 
exponent bias of 1023 (half, quad similar)!
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Understanding the Significand (1/2)!

• Method 1 (Fractions):!
• In decimal: 0.34010 !⇒ 34010/100010
! ! ! ! ! !⇒ 3410/10010!

• In binary: 0.1102 !⇒ 1102/10002 = 610/810 !
!! ! !         ⇒ 112/1002 = 310/410!

• Advantage: less purely numerical, more 
thought oriented; this method usually 
helps people understand the meaning of 
the significand better!
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Understanding the Significand (2/2)!

• Method 2 (Place Values):!
• Convert from scientific notation!
• In decimal: !1.6732 = (1x100) + (6x10-1) + 
(7x10-2) + (3x10-3) + (2x10-4)!

• In binary: !1.1001 = (1x20) + (1x2-1) + 
(0x2-2) + (0x2-3) + (1x2-4)!

• Interpretation of value in each position 
extends beyond the decimal/binary point!

• Advantage: good for quickly calculating 
significand value; use this method for 
translating FP numbers!


