
CS61C L15 Floating Point I (1)! Garcia, Spring 2010 © UCB!

! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 15  
Floating Point 

 2010-02-24!

Chatroulette site ⇒  
Random-pairing videochat,

anonymously. Surreal.
Watch for NC17 content. !

www.nytimes.com/2010/02/21/weekinreview/21bilton.html

Hello to Robb Neuschwander  
listening from Louisville, KY!!

CS61C L15 Floating Point I (2)! Garcia, Spring 2010 © UCB!

Quote of the day!

“95% of the  
folks out there are  

completely clueless
about floating-point.”!

! !James Gosling  
!Sun Fellow 
!Java Inventor  
!1998-02-28!

CS61C L15 Floating Point I (3)! Garcia, Spring 2010 © UCB!

Review of Numbers!

• Computers are made to deal with
numbers!
• What can we represent in N bits?!

• 2N things, and no more! They could be…!
• Unsigned integers:!
! ! !0 !to !2N - 1!
(for N=32, 2N–1 = 4,294,967,295)!
• Signed Integers (Twoʼs Complement)!
! ! !-2(N-1)! !to ! 2(N-1) - 1!
(for N=32, 2(N-1) = 2,147,483,648)!

CS61C L15 Floating Point I (4)! Garcia, Spring 2010 © UCB!

What about other numbers?!
1.  Very large numbers? !(seconds/millennium) 

 ⇒ 31,556,926,00010 (3.155692610 x 1010)!

2.  Very small numbers? (Bohr radius) 
 ⇒ 0.000000000052917710m (5.2917710 x 10-11) !

3.  Numbers with both integer & fractional parts? 
 ⇒ 1.5 !

First consider #3. !

…our solution will also help with 1 and 2.!

CS61C L15 Floating Point I (5)! Garcia, Spring 2010 © UCB!

Representation of Fractions!
“Binary Point” like decimal point signifies
boundary between integer and fractional parts:!

xx.yyyy!
21! 20! 2-1! 2-2! 2-3! 2-4!

Example 6-bit
representation:!

10.10102 = 1x21 + 1x2-1 + 1x2-3 = 2.62510 !

If we assume “fixed binary point”, range of 6-bit
representations with this format: !

! ! !0 to 3.9375 (almost 4)!

CS61C L15 Floating Point I (6)! Garcia, Spring 2010 © UCB!

Fractional Powers of 2!

0 1.0 1
1   0.5 1/2
2   0.25 1/4
3   0.125 1/8
4   0.0625 1/16
5   0.03125 1/32
6   0.015625
7   0.0078125
8   0.00390625
9   0.001953125
10   0.0009765625
11   0.00048828125
12   0.000244140625
13   0.0001220703125
14   0.00006103515625
15   0.000030517578125

i 2-i!

CS61C L15 Floating Point I (7)! Garcia, Spring 2010 © UCB!

Representation of Fractions with Fixed Pt.!
What about addition and multiplication?!

Addition is
straightforward:!

 01.100 1.510
+ 00.100 0.510
 10.000 2.010

Multiplication a bit more complex:!

 01.100 1.510
 00.100 0.510
 00 000
 000 00
 0110 0
 00000
 00000
0000110000

HI LOW
Whereʼs the answer, 0.11? (need to remember where point is)!

CS61C L15 Floating Point I (8)! Garcia, Spring 2010 © UCB!

Representation of Fractions!
So far, in our examples we used a “fixed” binary point
what we really want is to “float” the binary point. Why?!

Floating binary point most effective use of our limited bits (and
thus more accuracy in our number representation):!

… 000000.001010100000…!

Any other solution would lose accuracy!!

example: put 0.1640625 into binary. Represent as in
5-bits choosing where to put the binary point.!

Store these bits and keep track of the binary
point 2 places to the left of the MSB!

With floating point rep., each numeral carries a exponent
field recording the whereabouts of its binary point. !

The binary point can be outside the stored bits, so very
large and small numbers can be represented.!

CS61C L15 Floating Point I (9)! Garcia, Spring 2010 © UCB!

Scientific Notation (in Decimal)!

6.0210 x 1023!

radix (base)!decimal point!

mantissa! exponent!

• Normalized form: no leadings 0s  
(exactly one digit to left of decimal point)!
• Alternatives to representing 1/1,000,000,000!

• Normalized: !1.0 x 10-9!
• Not normalized: !0.1 x 10-8,10.0 x 10-10 !

CS61C L15 Floating Point I (10)! Garcia, Spring 2010 © UCB!

Scientific Notation (in Binary)!

1.0two x 2-1!

radix (base)!“binary point”!

exponent!

• Computer arithmetic that supports it
called floating point, because it
represents numbers where the binary
point is not fixed, as it is for integers!

• Declare such variable in C as float!

mantissa!

CS61C L15 Floating Point I (11)! Garcia, Spring 2010 © UCB!

Floating Point Representation (1/2)!
• Normal format: +1.xxx…xtwo*2yyy…ytwo!
• Multiple of Word Size (32 bits)!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• S represents Sign ! ! !

!Exponent represents yʼs !!
!Significand represents xʼs!

• Represent numbers as small as  
2.0 x 10-38 to as large as 2.0 x 1038 !

CS61C L15 Floating Point I (12)! Garcia, Spring 2010 © UCB!

Floating Point Representation (2/2)!
• What if result too large? !

(> 2.0x1038 , < -2.0x1038)!
• Overflow! ⇒ Exponent larger than represented in 8-

bit Exponent field!

• What if result too small? !
(>0 & < 2.0x10-38 , <0 & > -2.0x10-38)!
• Underflow! ⇒ Negative exponent larger than

represented in 8-bit Exponent field!

• What would help reduce chances of overflow
and/or underflow?!

0! 2x10-38! 2x1038!1!-1! -2x10-38!-2x1038!

underflow! overflow!overflow!

CS61C L15 Floating Point I (13)! Garcia, Spring 2010 © UCB!

Double Precision Fl. Pt. Representation!
• Next Multiple of Word Size (64 bits)!

• Double Precision (vs. Single Precision)!
• C variable declared as double!
• Represent numbers almost as small as  
2.0 x 10-308 to almost as large as 2.0 x 10308 !

• But primary advantage is greater accuracy  
due to larger significand!

0!31!
S! Exponent!

30! 20!19!
Significand!

1 bit! 11 bits! 20 bits!
Significand (contʼd)!

32 bits!

CS61C L15 Floating Point I (14)! Garcia, Spring 2010 © UCB!

QUAD Precision Fl. Pt. Representation!
• Next Multiple of Word Size (128 bits)!

• Unbelievable range of numbers!
• Unbelievable precision (accuracy)!

• IEEE 754-2008 “binary128” standard!
• Has 15 exponent bits and 112 significand
bits (113 precision bits)!

• Oct-Precision? !
• Some have tried, no real traction so far!

• Half-Precision? !
• Yep, “binary16”: 1/5/10!
en.wikipedia.org/wiki/Floating_point

CS61C L15 Floating Point I (15)! Garcia, Spring 2010 © UCB!

Administrivia…Midterm in < 2 weeks!!

•  How should we study for the midterm?!
• Form study groups…donʼt prepare in isolation!!
• Attend the review session  

(Time/Location TBA)!
• Look over HW, Labs, Projects, class notes!!
• Go over old exams – HKN office has put them online

(link from 61C home page)!
• Attend TA office hours and work out hard probs!

CS61C L15 Floating Point I (16)! Garcia, Spring 2010 © UCB!

IEEE 754 Floating Point Standard (1/3)!
Single Precision (DP similar):!

•  Sign bit:! !1 means negative ! !
! ! !0 means positive!

• Significand:!
• To pack more bits, leading 1 implicit for

normalized numbers!
• 1 + 23 bits single, 1 + 52 bits double!
• always true: 0 < Significand < 1

(for normalized numbers)!
• Note: 0 has no leading 1, so reserve exponent

value 0 just for number 0!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!

CS61C L15 Floating Point I (17)! Garcia, Spring 2010 © UCB!

IEEE 754 Floating Point Standard (2/3)!

• IEEE 754 uses “biased exponent”
representation. !
• Designers wanted FP numbers to be used
even if no FP hardware; e.g., sort records with
FP numbers using integer compares!

• Wanted bigger (integer) exponent field to
represent bigger numbers. !

• 2ʼs complement poses a problem (because
negative numbers look bigger)!

• Weʼre going to see that the numbers are
ordered EXACTLY as in sign-magnitude!

  I.e., counting from binary odometer 00…00 up to
11…11 goes from 0 to +MAX to -0 to -MAX to 0!

CS61C L15 Floating Point I (18)! Garcia, Spring 2010 © UCB!

IEEE 754 Floating Point Standard (3/3)!
• Called Biased Notation, where bias is
number subtracted to get real number!
• IEEE 754 uses bias of 127 for single prec.!
• Subtract 127 from Exponent field to get
actual value for exponent!

• 1023 is bias for double precision!
• Summary (single precision):!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)!

CS61C L15 Floating Point I (19)! Garcia, Spring 2010 © UCB!

“Father” of the Floating point standard!

IEEE Standard 754
for Binary Floating-

Point Arithmetic.!

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Prof. Kahan!
1989���

ACM Turing���
Award Winner!!

CS61C L15 Floating Point I (20)! Garcia, Spring 2010 © UCB!

Example: Converting Binary FP to Decimal!

• Sign: 0 positive!
• Exponent: !

• 0110 1000two = 104ten!
• Bias adjustment: 104 - 127 = -23!

• Significand:!
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +... 
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22  
= 1.0 + 0.666115!

0! 0110 1000! 101 0101 0100 0011 0100 0010!

• Represents: 1.666115ten*2-23 ~ 1.986*10-7

!! !(about 2/10,000,000)!

CS61C L15 Floating Point I (21)! Garcia, Spring 2010 © UCB!

Example: Converting Decimal to FP!

1.  Denormalize: -23.40625!
2.  Convert integer part:!

23 = 16 + (7 = 4 + (3 = 2 + (1))) = 101112!

3.  Convert fractional part:!
.40625 = .25 + (.15625 = .125 + (.03125)) = .011012!

4.  Put parts together and normalize:!
10111.01101 = 1.011101101 x 24!

5.  Convert exponent: 127 + 4 = 100000112!

1! 1000 0011! 011 1011 0100 0000 0000 0000!

-2.340625 x 101!

CS61C L15 Floating Point I (22)! Garcia, Spring 2010 © UCB!

Peer Instruction!

What is the decimal equivalent
of the floating pt # above?!

1! 1000 0001! 111 0000 0000 0000 0000 0000!
 a) -7 * 2^129
b) -3.5
c) -3.75
d) -7
e) -7.5

CS61C L15 Floating Point I (23)! Garcia, Spring 2010 © UCB!

Peer Instruction Answer!
What is the decimal equivalent of:!

1! 1000 0001! 111 0000 0000 0000 0000 0000!
S! Exponent! Significand!
(-1)S x (1 + Significand) x 2(Exponent-127)!

(-1)1 x (1 + .111) x 2(129-127)!

 -1 x (1.111) x 2(2)!

-111.1!
-7.5!

 a) -7 * 2^129
b) -3.5
c) -3.75
d) -7
e) -7.5

CS61C L15 Floating Point I (24)! Garcia, Spring 2010 © UCB!

“And in conclusion…”!
• Floating Point lets us:!

•  Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.!

•  Store approximate values for very large and very small #s.!

•  IEEE 754 Floating Point Standard is most widely
accepted attempt to standardize interpretation of such
numbers (Every desktop or server computer sold
since ~1997 follows these conventions)!
• Summary (single precision):!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)!

CS61C L15 Floating Point I (25)! Garcia, Spring 2010 © UCB!

Understanding the Significand (1/2)!

• Method 1 (Fractions):!
• In decimal: 0.34010 !⇒ 34010/100010
! ! ! ! ! !⇒ 3410/10010!

• In binary: 0.1102 !⇒ 1102/10002 = 610/810 !
!! ! ! ⇒ 112/1002 = 310/410!

• Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better!

CS61C L15 Floating Point I (26)! Garcia, Spring 2010 © UCB!

Understanding the Significand (2/2)!

• Method 2 (Place Values):!
• Convert from scientific notation!
• In decimal: !1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)!

• In binary: !1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)!

• Interpretation of value in each position
extends beyond the decimal/binary point!

• Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers!

