inst.eecs.berkeley.edu/~csblc

CS61C : Machine Structures

Lecture 15
Floating Point

Hello to Robb Neuschwander

2010-02-24 iistening from Louisville, KY!
Lecturer SOE Dan Garcia

www.cs .berkeley.edu/~ddgarcia

"
e
o U

\
Y

Chatroulette site =
Random-pairing videochat,

anonymously. Surreal.
Watch for NC17 content. ®

www.nytimes.com/2010/02/21/weekinreview/21bilton.html

CS61C L15 Floating Point I (1) Garcia, Spring 2010 © UCB

Quote of the day

“95% of the
folks out there are
completely clueless
about floating-point.”

James Gosling
Sun Fellow

Java Inventor
1998-02-28

ting Point | (2)

Review of Numbers

e Computers are made to deal with
numbers

 What can we represent in N bits?

- 2N things, and no more! They could be...

- Unsigned integers:
0 to 2N-1

(for N=32, 2N-1 =4,294,967,295)

- Signed Integers (Two’s Complement)
-2(N-1) to 2(N-1) . 4

Q (for N=32, 2(N-1) =2/147,483,648)

CS61C L15 Floating Point I (3) Garcia, Spring 2010 © UCB

What about other numbers?

1. Very large numbers? (seconds/millennium)
= 31,556,926,000,, (3.1556926,, x 101°)

2. Very small numbers? (Bohr radius)
= 0.0000000000529177,,m (5.29177,, x 10-17)

3. Numbers with both integer & fractional parts?
= 1.5

First consider #3.

...our solution will also help with 1 and 2.

@ CS61C L15 Floating Point | (4) Garcia, Spring 2010 © UCB

Representation of Fractions

“Binary Point” like decimal point signifies
boundary between integer and fractional parts:

Example 6-bit XX.YYVY
representation: o1] AR

20 2-1 2_2 2_3 2-4
10.1010, = 1x27 + 1x21 + 1x2-3 = 2.625,,

If we assume “fixed binary point”, range of 6-bit

representations with this format:
0 to 3.9375 (almost 4)

Q CS61C L15 Floating Point | (5) Garcia, Spring 2010 © UCB

Fractional Powers of 2

i |2

0 |1.0 1

1 |0.5 1/2

2 10.25 1/4

3 (0.125 1/8

4 10.0625 1/16

5 (0.03125 1/32

6 |0.015625

7 [0.0078125

8 |0.00390625

9 10.001953125

10/0.0009765625

11/0.00048828125

12(0.000244140625

13/0.0001220703125

14|0.00006103515625
0.000030517578125

@ CS61C L15 Floating Point | (6) Garcia, Spring 2010 © UCB

Representation of Fractions with Fixed Pt.

What about addition and multiplication?

- _ 01.100 1.5,
Add.ltlon IS + 00.100 0.5,
straightforward: ~ 10.000 2.0, 01.100 1.5,
00.100 0.5,
o _ . 00 000
Multiplication a bit more complex: 500 00
0110 O
00000
00000
0000110000
Y A4
HT LOW

2 Where’s the answer, 0.117? (need to remember where point is)

CS61C L15 Floating Point | (7) Garcia, Spring 2010 © UCB

Representation of Fractions
So far, in our examples we used a “fixed” binary point
what we really want is to “float” the binary point. Why?

Floating binary point most effective use of our limited bits (and
thus more accuracy in our number representation):

example: put 0.1640625 into binary. Represent as in
5-bits choosing where to put the binary point.

... 000000.001010100000...
—

Store these bits and keep track of the binary
point 2 places to the left of the MSB

Any other solution would lose accuracy!

With floating point rep., each numeral carries a exponent
field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very
! large and small nhumbers can be represented.

CS61C L15 Floating Point | (8) Garcia, Spring 2010 © UCB

Scientific Notation (in Decimal)

i exponent
mantlﬁcsfozw K05

N\

decimal point radix (base)

 Normalized form: no leadings 0s _
(exactly one digit to left of decimal point)

 Alternatives to representing 1/1,000,000,000
- Normalized: 1.0 x 10°°
- Not normalized: 0.1 x 108,10.0 x 10-10

@ CS61C L15 Floating Point | (9) Garcia, Spring 2010 © UCB

Scientific Notation (in Binary)

rnanti%A /exponent
1.0

e X &

“binary point” radix (base)

 Computer arithmetic that supports it
called floating %omt, because it
represents numbers where the binary
point is not fixed, as it is for integers

* Declare such variable in C as float

Q CS61C L15 Floating Point | (10) Garcia, Spring 2010 © UCB

Floating Point Representation (1/2)

 Normal format: +1.xxX...X;,,*2Y¥¥Yitwo
 Multiple of Word Size (32 bits)

3130 23 22
IS| Exponent | Significand Q\
1 bit 8 bits 23 bits
represents

Xponent represents y’s
Significand represents x’s

 Represent numbers as small as
2.0 x 1038 to as large as 2.0 x 1038

Q CS61C L15 Floating Point | (11) Garcia, Spring 2010 © UCB

Floating Point Representation (2/2)

 What if result too large?
(>2.0x103%8 |, < -2.0x1038)

- Overflow! = Exponent larger than represented in 8-
bit Exponent field

« What if result too small?
(>0 & <2.0x1038 , <0 & > -2.0x10-38)

- Underflow! = Negative exponent larger than
represented in 8-bit Exponent field

overflow underflow overflow

| &« | i I «] «]
| 0 | 0 . 0 | 0 |

-2x1038 -1 -2x1038 g 2x1038 1 2x1038

« What would help reduce chances of overflow

gnd/or underflow?
CS61C L15 Floating Point | (12) Garcia, Spring 2010 © UCB

Double Precision Fl. Pt. Representation
* Next Multiple of Word Size (64 bits)

3130 20 19
IS| Exponent | Significand Q\
1 bit 11 bits 20 bits
| Significand (cont’d) |
32 bits

 Double Precision (vs. Single Precision)
- C variable declared as double

* Represent numbers almost as small as
2.0 x 10-308 to almost as large as 2.0 x 10308

- But primary advantage is greater accuracy
Q(due to larger significand

CS61C L15 Floating Point | (13) Garcia, Spring 2010 © UCB

QUAD Precision FIl. Pt. Representation

- Next Multiple of Word Size (128 bits)

- Unbelievable range of numbers
- Unbelievable precision (accuracy)

 IEEE 754-2008 “binary128” standard

* Has 15 exponent bits and 112 significand
bits (113 precision bits)

e Oct-Precision?
- Some have tried, no real traction so far

e Half-Precision?
 Yep, “binary16”: 1/5/10

2 en.wikipedia.org/wiki/Floating point

CS61C L15 Floating Point | (14) Garcia, Spring 2010 © UCB

Administrivia...Midterm in < 2 weeks!

« How should we study for the midterm?
- Form study groups...don’t prepare in isolation!

- Attend the review session
(Time/Location TBA)

- Look over HW, Labs, Projects, class notes!

- Go over old exams — HKN office has put them online
(link from 61C home page)

- Attend TA office hours and work out hard probs

ﬂ CS61C L15 Floating Point | (15) Garcia, Spring 2010 © UCB

IEEE 754 Floating Point Standard (1/3)
Single Precision (DP similar):

3130 23 22

IS| Exponent | Significand Q\
1 bit 8 bits 23 bits
e Sign bit: 1 means negative

0 means positive
* Significand:

To pack more bits, leading 1 implicit for
normalized numbers

- 1 + 23 bits single, 1 + 52 bits double

- always true: 0 < Significand < 1
(for normalized numbers)

* Note: 0 has no leading 1, so reserve exponent

Cdlalue 0 just for number 0

CS61C L15 Floating Point | (16) Garcia, Spring 2010 © UCB

IEEE 754 Floating Point Standard (2/3)

 [EEE 754 uses “biased exponent”
representation.

- Designers wanted FP numbers to be used
even if no FP hardware; e.g., sort records with
FP numbers using integer compares

- Wanted bigger (integer) exponent field to
represent bigger numbers.

- 2’s complement poses a problem (because
negative numbers look bigger)

- We’re going to see that the numbers are
ordered EXACTLY as in sign-magnitude

= |.e., counting from binary odometer 00...00 up to
11...11 goes from 0 to +MAX to -0 to -MAX to 0

CS61C L15 Floating Point | (17) Garcia, Spring 2010 © UCB

IEEE 754 Floating Point Standard (3/3)

e Called Biased Notation, where bias is
number subtracted to get real number

 [IEEE 754 uses bias of 127 for single prec.

- Subtract 127 from Exponent field to get
actual value for exponent

« 1023 is bias for double precision

e Summary (single precision):
3130 23 22
IS| Exponent | Significand

1 bit 8 bits 23 bits
*(-1)S x (1 + Significand) x 2(Exponent-127)

- Double precision identical, except with
Cd exponent bias of 1023 (half, quad similar)

CS61C L15 Floating Point | (18) Garcia, Spring 2010 © UCB

“Father” of the Floating point standard

IEEE Standard 754

for Binary Floating-
Point Arithmetic.

1989
‘ ACM Turing

Award Winner!
A= =\

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Q CS61C L15 Floating Point | (19) Garcia, Spring 2010 © UCB

Prof. Kahan

Example: Converting Binary FP to Decimal
lo| 0110 1000|101 0101 0100 0011 0100 0010 |

e Sign: 0 = positiv
 Exponent:

+0110 1000,/ = 104,

- Bias adjustment: 104\- 12A=
 Significand

1+ 1x27+ 0x22 + 1x23 + 0x24 + 1x2° +
=14+21423 425 +2°7 +2°° 214+215+217+222
=1.0 + 0.666115

* Represents: 1.666115,,, 223 ~ 1.986*10°7

Cd (about 2/10,000,000)

CS61C L15 Floating Point | (20) Garcia, Spring 2010 © UCB

Example: Converting Decimal to FP
-2.340625 x 101

1. Denormalize: -23.40625

2. Convert integer part:
23=16+(7=4+(3=2+(1))) = 10111,

3. Convert fractional part:
40625 = .25 + (.15625 =.125 + (.03125)) =.01101,

4. Put parts together and normalize:
10111.01101 =1.011101101 x 24

5. Convert exponent: 127 + 4 =10000011,

!1 11000 0011 {011 1011 0100 0000 0000 0000 |

CS61C L15 Floating Point | (21) Garcia, Spring 2010 © UCB

Peer Instruction

11| 1000 0001 | 111 0000 0000 0000 0000 0000 |

: . :) =7 * 24129
What is the decimal equivalent 1&;) -3.5

of the floating pt # above? g; 73.75

e) -7.5

Q CS61C L15 Floating Point | (22) Garcia, Spring 2010 © UCB

Peer Instruction Answer

What is the decimal equivalent of:

11l 1000 0001 | 111 0000 0000 0000 0000 0000 |
Exponent Significand
(-1)° x (1 + Significand) x 2(Exponent-127)
(-1)" x (1 +.111) x 2(129-127)
-1 x(1.111) x 23

-111.1 a) -7 * 27129
b) -3.5

-7.5 c) -3.75
d) -7

@ CS61C L15 Floating Point | (23) Garcia, Spring 2010 © UCB

“And in conclusion...”

* Floating Point lets us:

- Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.

- Store approximate values for very large and very small #s.

 [IEEE 754 Floating Point Standard is most widely
accepted attempt to standardize interpretation of such
numbers (Every desktop or server computer sold
since ~1997 follows these conventions)

e Summary (single precision):
3130 23 22
IS| Exponent | Significand

1 bit 8 bits 23 bits
*(-1)S x (1 + Significand) x 2(Exponent-127)

- Double precision identical, except with
(d exponent bias of 1023 (half, quad similar)

CS61C L15 Floating Point | (24) Garcia, Spring 2010 © UCB

Understanding the Significand (1/2)

 Method 1 (Fractions):

.In decimal: 0.340,, = 340,,/1000,,
= 3410/1 0010

* In binary: 0.110, = 110,/1000, = 6,,/8,,

- Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better

ﬂ CS61C L15 Floating Point | (25) Garcia, Spring 2010 © UCB

Understanding the Significand (2/2)

 Method 2 (Place Values):

- Convert from scientific notation

*In decimal: 1.6732 = (1x109) + (6x10-") +
(7x102) + (3x103) + (2x10-%)

*In binary: 1.1001 = (1x2°) + (1x27) +
(0x22) + (0x2-3) + (1x24)

- Interpretation of value in each position
extends beyond the decimal/binary point

- Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers

ﬂ CS61C L15 Floating Point | (26) Garcia, Spring 2010 © UCB

