

Review of Numbers

- Computers are made to deal with numbers
- What can we represent in \mathbf{N} bits?
$\cdot 2^{\mathrm{N}}$ things, and no more! They could be...
- Unsigned integers:

$$
0 \text { to } 2^{N}-1
$$

(for $\mathrm{N}=32,2^{\mathrm{N}}-1=4,294,967,295$)

- Signed Integers (Two's Complement)

$$
-2^{(N-1)} \text { to } 2^{(N-1)}-1
$$

(for $\left.\mathrm{N}=32,2^{(\mathrm{N}-1)}=2,147,483,648\right)$

Representation of Fractions

"Binary Point" like decimal point signifies boundary between integer and fractional parts:

Example 6-bit representation:

$\mathbf{1 0 . 1 0 1 0}_{2}=1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=\mathbf{2 . 6 2 5}_{10}$
If we assume "fixed binary point", range of 6-bit representations with this format:

0 to 3.9375 (almost 4)
\qquad

Quote of the day

" 95% of the folks out there are completely clueless about floating-point."

James Gosling Sun Fellow Java Inventor 1998-02-28
Cal Garcia, Spring 2010@UCB

What about other numbers?

1. Very large numbers? (seconds/millennium) $\Rightarrow 31,556,926,000_{10}\left(3.1556926_{10} \times 10^{10}\right)$
2. Very small numbers? (Bohr radius) $\Rightarrow 0.0000000000529177_{10} \mathrm{~m}\left(5.29177_{10} \times 10^{-11}\right)$
3. Numbers with both integer \& fractional parts? $\Rightarrow 1.5$

First consider \#3.
...our solution will also help with 1 and 2.

Representation of Fractions with Fixed Pt.

What about addition and multiplication?

Where's the answer, 0.11 ? (need to remember where point is)
.
Garcia, Spring $2010 @$ UCB

Scientific Notation (in Decimal)	
- Normalized form: no leadings 0s (exactly one digit to left of decimal point)	
- Alternatives to representing 1/1,000,000,000	
- Normalized:	1.0×10^{-9}
- Not normalized	$0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Cal	

Floating Point Representation (1/2)

- Normal format: +1.xxx... $\mathrm{x}_{\mathrm{two}}{ }^{*} \mathbf{2 y y y}^{\mathrm{yy}} \ldots \mathrm{y}_{\mathrm{two}}$
- Multiple of Word Size (32 bits)

3130
31
S

1 bit 8 bits
23 bits

- S represents Sign

Exponent represents y's
Significand represents x's
-Represent numbers as small as
2.0×10^{-38} to as large as 2.0×10^{38}
Cal Garcia, Spring $2010 @ u C B$

Representation of Fractions

So far, in our examples we used a "fixed" binary point what we really want is to "float" the binary point. Why?
Floating binary point most effective use of our limited bits (and thus more accuracy in our number representation):
example: put 0.1640625 into binary. Represent as in 5-bits choosing where to put the binary point.

$$
000000.001 \underbrace{010100000 . .}
$$

Store these bits and keep track of the binary point 2 places to the left of the MSB

Any other solution would lose accuracy!
With floating point rep., each numeral carries a exponent field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very large and small numbers can be represented.
$\underset{\sim}{c s 61 c}$ L155 Floating Point (8) Garcia, Spring 2010 U UC

Scientific Notation (in Binary)

- Computer arithmetic that supports it called floating point, because it represents numbers where the binary point is not fixed, as it is for integers
- Declare such variable in C as float
\qquad

Floating Point Representation (2/2)

- What if result too large?

$$
\begin{aligned}
& \left(>2.0 \times 10^{38},<-2.0 \times 10^{38}\right) \\
& \text { Overflow! } \Rightarrow \text { Exponent larger than represented in } 8 \text { - } \\
& \text { bit Exponent field }
\end{aligned}
$$

- What if result too small?
($>0 \&<2.0 \times 10^{-38},<0 \&>-2.0 \times 10^{-38}$)
- Underflow! \Rightarrow Negative exponent larger than represented in 8-bit Exponent field

- What would help reduce chances of overflow and/or underflow?

Administrivia...Midterm in < 2 weeks!

- How should we study for the midterm?
- Form study groups...don't prepare in isolation!
- Attend the review session
(Time/Location TBA)
- Look over HW, Labs, Projects, class notes!
- Go over old exams - HKN office has put them online (link from 61C home page)
- Attend TA office hours and work out hard probs

IEEE 754 Floating Point Standard (2/3)

- IEEE 754 uses "biased exponent" representation.
- Designers wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Wanted bigger (integer) exponent field to represent bigger numbers.
- 2's complement poses a problem (because negative numbers look bigger)
- We're going to see that the numbers are ordered EXACTLY as in sign-magnitude
- I.e., counting from binary odometer $00 \ldots 00$ up to 11... 11 goes from 0 to +MAX to -0 to -MAX to 0
cs61c L15 Floating Point ((17)
Garcia, Spring 2010 @ UCB

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
-IEEE 754-2008 "binary128" standard
- Has 15 exponent bits and 112 significand bits (113 precision bits)
- Oct-Precision?
- Some have tried, no real traction so far
- Half-Precision?
-Yep, "binary16": 1/5/10
Cal
en.wikipedia.org/wiki/Floating_point
cs61c L15 Garcia, Spring 2010 @ UCB

IEEE 754 Floating Point Standard (1/3)	
Single Precision (DP similar):	
3130	2322
S Exponent	Significand
1 bit 8 bits	23 bits
- Sign bit: $\quad 1$ means negative	
- Significand:	
• To pack more bits, leading 1 implicit for	
normalized numbers	
•1 + 23 bits single, $1+52$ bits double	
• always true: $0<$ Significand <1	
(for normalized numbers)	

- Note: 0 has no leading 1 , so reserve exponent Colvalue 0 just for number 0
\qquad

IEEE 754 Floating Point Standard (3/3)	
- Called Biased Notation, where bias is number subtracted to get real number	
- IEEE 754 uses bias of 127 for single prec.	
- Subtract 127 from Exponent field to get actual value for exponent	
- 1023 is bias for double precision	
- Summary (single precision):	
3130	
S Exponent	Significand
1 bit 8 bits	23 bits
$\bullet(-1)^{S} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$	
$\text { Col }{ }_{c}^{\text {Double pre }}$	entical, except with 23 (half, quad similar)

Example: Converting Decimal to FP
 -2.340625×10^{1}

1. Denormalize: -23.40625
2. Convert integer part:
$23=16+(7=4+(3=2+(1)))=10111_{2}$
3. Convert fractional part:

$$
.40625=.25+(.15625=.125+(.03125))=.01101_{2}
$$

4. Put parts together and normalize:
$10111.01101=1.011101101 \times 2^{4}$
5. Convert exponent: $127+4=10000011_{2}$

1	10000011	01110110100000000000000

Garcia, Spring 2010 © UCB

Understanding the Significand (1/2)

- Method 1 (Fractions):

- In decimal: $0.340_{10} \quad \Rightarrow \begin{array}{ll} & 340_{10} / 1000_{10} \\ & \Rightarrow 34_{10} / 100_{10}\end{array}$
\cdot In binary: $0.110_{2} \Rightarrow 110 / 1000_{2}=6_{10} / 8_{10}$ $\Rightarrow 11_{2} / 100_{2}=3_{10} / 4_{10}$
- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Understanding the Significand (2/2)

- Method 2 (Place Values):

- Convert from scientific notation
- In decimal: $1.6732=\left(1 \times 10^{0}\right)+\left(6 \times 10^{-1}\right)+$ $\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
- In binary: $\quad 1.1001=\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$ $\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers
Cal \qquad

