
inst.eecs.berkeley.edu/~cs61c
UCB CS61C : Machine Structures

 Lecture 10
Introduction to MIPS : Decisions II

 2008-02-10

People are wondering what the next big thing
after the Nintendo Wii will be. Microsoft and
Sony think the future is webcam-based input.
Others think it’s games for mobile phone that
make use of location-aware features. E.g., the
“Hot Potato” game: If you’ve got it, you “throw” it
to a nearby neighbor. If you don’t, you run away.

Lecturer SOE
Dan Garcia

www.technologyreview.com/blog/arxiv/24783/

Howdy to
Marcus Wilson
from Austin, TX!

CS61C L10 Introduction to MIPS : Decisions II (2) Garcia, Spring 2010 © UCB

Review
  Memory is byte-addressable, but lw and sw

access one word at a time.
  A pointer (used by lw and sw) is just a memory

address, so we can add to it or subtract from it
(using offset).

  A Decision allows us to decide what to execute at
run-time rather than compile-time.

  C Decisions are made using conditional statements
within if, while, do while, for.

  MIPS Decision making instructions are the
conditional branches: beq and bne.

  New Instructions:
lw, sw, beq, bne, j

CS61C L10 Introduction to MIPS : Decisions II (3) Garcia, Spring 2010 © UCB

Last time: Loading, Storing bytes 1/2

  In addition to word data transfers
(lw, sw), MIPS has byte data transfers:
  load byte: lb
  store byte: sb

  same format as lw, sw
  E.g., lb $s0, 3($s1)

  contents of memory location with address = sum
of “3” + contents of register s1 is copied to the
low byte position of register s0.

CS61C L10 Introduction to MIPS : Decisions II (4) Garcia, Spring 2010 © UCB

x

Loading, Storing bytes 2/2
  What do with other 24 bits in the 32 bit register?

  lb: sign extends to fill upper 24 bits

  Normally don’t want to sign extend chars
  MIPS instruction that doesn’t

 sign extend when loading bytes:
  load byte unsigned: lbu

byte
loaded …is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz

CS61C L10 Introduction to MIPS : Decisions II (5) Garcia, Spring 2010 © UCB

Overflow in Arithmetic (1/2)

  Reminder: Overflow occurs when there is a
mistake in arithmetic due to the limited
precision in computers.

  Example (4-bit unsigned numbers):
 15 1111
 + 3 + 0011
 18 10010
  But we don’t have room for 5-bit solution, so the

solution would be 0010, which is +2, and wrong.

CS61C L10 Introduction to MIPS : Decisions II (6) Garcia, Spring 2010 © UCB

Overflow in Arithmetic (2/2)

  Some languages detect overflow (Ada),
some don’t (C)

  MIPS solution is 2 kinds of arithmetic instructs:
  These cause overflow to be detected
  add (add)
  add immediate (addi)
  subtract (sub)

  These do not cause overflow detection
  add unsigned (addu)
  add immediate unsigned (addiu)
  subtract unsigned (subu)

  Compiler selects appropriate arithmetic
  MIPS C compilers produce addu, addiu, subu

CS61C L10 Introduction to MIPS : Decisions II (7) Garcia, Spring 2010 © UCB

Two “Logic” Instructions

  Here are 2 more new instructions
  Shift Left: sll $s1,$s2,2 #s1=s2<<2

  Store in $s1 the value from $s2 shifted 2 bits to the
left (they fall off end), inserting 0’s on right; << in C.

  Before: 0000 0002hex
0000 0000 0000 0000 0000 0000 0000 0010two

  After: 0000 0008hex
0000 0000 0000 0000 0000 0000 0000 1000two

  What arithmetic effect does shift left have?

  Shift Right: srl is opposite shift; >>

CS61C L10 Introduction to MIPS : Decisions II (8) Garcia, Spring 2010 © UCB

Loops in C/Assembly (1/3)

  Simple loop in C; A[] is an array of ints
 do { g = g + A[i];
 i = i + j;
} while (i != h);

  Rewrite this as:
 Loop: g = g + A[i];
 i = i + j;
 if (i != h) goto Loop;

  Use this mapping:
 g, h, i, j, base of A
 $s1, $s2, $s3, $s4, $s5

CS61C L10 Introduction to MIPS : Decisions II (9) Garcia, Spring 2010 © UCB

Loops in C/Assembly (2/3)

  Final compiled MIPS code:
Loop: sll $t1,$s3,2 # $t1= 4*I
 addu $t1,$t1,$s5 # $t1=addr A+4i
 lw $t1,0($t1) # $t1=A[i]
 addu $s1,$s1,$t1 # g=g+A[i]
 addu $s3,$s3,$s4 # i=i+j
 bne $s3,$s2,Loop # goto Loop
 # if i!=h

  Original code:
 Loop: g = g + A[i];
 i = i + j;
 if (i != h) goto Loop;

CS61C L10 Introduction to MIPS : Decisions II (10) Garcia, Spring 2010 © UCB

Loops in C/Assembly (3/3)
  There are three types of loops in C:

  while
  do… while
  for

  Each can be rewritten as either of the other two,
so the method used in the previous example
can be applied to these loops as well.

  Key Concept: Though there are multiple ways of
writing a loop in MIPS, the key to decision-
making is conditional branch

CS61C L10 Introduction to MIPS : Decisions II (11) Garcia, Spring 2010 © UCB

Administrivia
  Project 1 due Friday!

  (ok, Saturday, but tell your brain it’s Friday!)

  Details about Faux Exam 1, 2010-02-17 (a week)
  Covers everything before (but not including) MIPS

  Number rep, C, Memory management

  We pull actual exam questions from Dan’s midterms
  We make a “faux exam” that you study for and take just

like a real exam. You’ll swap with your neighbor to grade
it, and the TA explains the answer. If you can’t make it to
the actual faux exam, the exam & answers will be online.

  All the benefits of a real exam with no downsides!

  Other administrivia?

CS61C L10 Introduction to MIPS : Decisions II (12) Garcia, Spring 2010 © UCB

Inequalities in MIPS (1/4)
  Until now, we’ve only tested equalities

(== and != in C). General programs need to
test < and > as well.

  Introduce MIPS Inequality Instruction:
  “Set on Less Than”
  Syntax: slt reg1,reg2,reg3
  Meaning:

 if (reg2 < reg3)
 reg1 = 1;
 else reg1 = 0;

 “set” means “change to 1”,
“reset” means “change to 0”.

reg1 = (reg2 < reg3);

Same thing…

CS61C L10 Introduction to MIPS : Decisions II (13) Garcia, Spring 2010 © UCB

Inequalities in MIPS (2/4)

  How do we use this? Compile by hand:
if (g < h) goto Less; #g:$s0, h:$s1

  Answer: compiled MIPS code…

 slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less
 # if $t0!=0
 # (if (g<h)) Less:

  Register $0 always contains the value 0, so bne
and beq often use it for comparison after an
slt instruction.

  A slt bne pair means if(… < …)goto…

CS61C L10 Introduction to MIPS : Decisions II (14) Garcia, Spring 2010 © UCB

Inequalities in MIPS (3/4)

  Now we can implement <,
but how do we implement >, ≤ and ≥ ?

  We could add 3 more instructions, but:
  MIPS goal: Simpler is Better

  Can we implement ≤ in one or more
instructions using just slt and branches?
  What about >?
  What about ≥?

CS61C L10 Introduction to MIPS : Decisions II (15) Garcia, Spring 2010 © UCB

Inequalities in MIPS (4/4)

 # a:$s0, b:$s1
slt $t0,$s0,$s1 # $t0 = 1 if a<b
beq $t0,$0,skip # skip if a >= b
 <stuff> # do if a<b
skip:

Two independent variations possible:
Use slt $t0,$s1,$s0 instead of
slt $t0,$s0,$s1

Use bne instead of beq

CS61C L10 Introduction to MIPS : Decisions II (16) Garcia, Spring 2010 © UCB

Immediates in Inequalities

  There is also an immediate version of slt to
test against constants: slti
  Helpful in for loops

 if (g >= 1) goto Loop
 Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
 # $s0<1 (g<1)
beq $t0,$0,Loop # goto Loop
 # if $t0==0
 # (if (g>=1))

C!

M 
I 
P 
S!

An slt beq pair means if(… ≥ …)goto…

CS61C L10 Introduction to MIPS : Decisions II (17) Garcia, Spring 2010 © UCB

What about unsigned numbers?

  Also unsigned inequality instructions:
 sltu, sltiu

…which sets result to 1 or 0 depending on
unsigned comparisons

  What is value of $t0, $t1?
($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)

 slt $t0, $s0, $s1
sltu $t1, $s0, $s1

CS61C L10 Introduction to MIPS : Decisions II (18) Garcia, Spring 2010 © UCB

MIPS Signed vs. Unsigned – diff meanings!
  MIPS terms Signed/Unsigned “overloaded”:

  Do/Don't sign extend
  (lb, lbu)

  Do/Don't overflow
  (add, addi, sub, mult, div)
  (addu, addiu, subu, multu, divu)

  Do signed/unsigned compare
  (slt, slti/sltu, sltiu)

CS61C L10 Introduction to MIPS : Decisions II (19) Garcia, Spring 2010 © UCB

 What C code properly fills in the
blank in loop below?

Peer Instruction

do {i--;} while(__);

Loop:addi $s0,$s0,-1 # i = i - 1
 slti $t0,$s1,2 # $t0 = (j < 2)
 beq $t0,$0 ,Loop # goto Loop if $t0 == 0
 slt $t0,$s1,$s0 # $t0 = (j < i)
 bne $t0,$0 ,Loop # goto Loop if $t0 != 0

a) j < 2 && j < i
a) j ≥ 2 && j < i
b) j < 2 && j ≥ i
b) j ≥ 2 && j ≥ i
c) j > 2 && j < i
c) j < 2 || j < i
d) j ≥ 2 || j < i
d) j < 2 || j ≥ i
e) j ≥ 2 || j ≥ i
e) j > 2 || j < i

($s0=i, $s1=j)

CS61C L10 Introduction to MIPS : Decisions II (20) Garcia, Spring 2010 © UCB

“And in conclusion…”

  To help the conditional branches make decisions
concerning inequalities, we introduce: “Set on
Less Than” called
slt, slti, sltu, sltiu

  One can store and load (signed and unsigned)
bytes as well as words with lb, lbu

  Unsigned add/sub don’t cause overflow
  New MIPS Instructions:
 sll, srl, lb, lbu
 slt, slti, sltu, sltiu
 addu, addiu, subu

CS61C L10 Introduction to MIPS : Decisions II (21) Garcia, Spring 2010 © UCB

Bonus Slides

CS61C L10 Introduction to MIPS : Decisions II (22) Garcia, Spring 2010 © UCB

Example: The C Switch Statement (1/3)

  Choose among four alternatives depending on
whether k has the value 0, 1, 2 or 3. Compile this
C code:

switch (k) {
 case 0: f=i+j; break; /* k=0 */
 case 1: f=g+h; break; /* k=1 */
 case 2: f=g–h; break; /* k=2 */
 case 3: f=i–j; break; /* k=3 */
}

CS61C L10 Introduction to MIPS : Decisions II (23) Garcia, Spring 2010 © UCB

Example: The C Switch Statement (2/3)

  This is complicated, so simplify.
  Rewrite it as a chain of if-else statements,

which we already know how to compile:
if(k==0) f=i+j;
 else if(k==1) f=g+h;
 else if(k==2) f=g–h;
 else if(k==3) f=i–j;

  Use this mapping:
 f:$s0, g:$s1, h:$s2,
i:$s3, j:$s4, k:$s5

CS61C L10 Introduction to MIPS : Decisions II (24) Garcia, Spring 2010 © UCB

Example: The C Switch Statement (3/3)

  Final compiled MIPS code:
 bne $s5,$0,L1 # branch k!=0
 add $s0,$s3,$s4 #k==0 so f=i+j
 j Exit # end of case so Exit
L1: addi $t0,$s5,-1 # $t0=k-1
 bne $t0,$0,L2 # branch k!=1
 add $s0,$s1,$s2 #k==1 so f=g+h
 j Exit # end of case so Exit
L2: addi $t0,$s5,-2 # $t0=k-2
 bne $t0,$0,L3 # branch k!=2
 sub $s0,$s1,$s2 #k==2 so f=g-h
 j Exit # end of case so Exit
L3: addi $t0,$s5,-3 # $t0=k-3
 bne $t0,$0,Exit # branch k!=3
 sub $s0,$s3,$s4 # k==3 so f=i-j
Exit:

