
CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (1)! Garcia, Spring 2010 © UCB!

! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 
 Lecture 8 – Introduction to MIPS 
Assembly language : Arithmetic  

 2010-02-05!

Chinese Hackers ⇒  
The NY Times has an 

insiders look at the life of a Chinese
hacker. Itʼs a fascinating peek into the

dark side of programming. “Do hackers
work for government/military?” “Yes”!

www.nytimes.com/2010/02/02/business/global/02hacker.html

Hello to Jessy VanDivner  
listening from Ohio!!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (2)! Garcia, Spring 2010 © UCB!

Review!
• Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy!

• 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.!

• Each technique has strengths and
weaknesses, none is definitively best!

• Automatic memory management relieves
programmer from managing memory.!

• All require help from language and compiler!
• Reference Count: not for circular structures!
• Mark and Sweep: complicated and slow, works!
• Copying: move active objects back and forth!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (3)! Garcia, Spring 2010 © UCB!

Assembly Language!

• Basic job of a CPU: execute lots of
instructions.!

• Instructions are the primitive
operations that the CPU may execute.!

• Different CPUs implement different
sets of instructions. The set of
instructions a particular CPU
implements is an Instruction Set
Architecture (ISA).!

• Examples: Intel 80x86 (Pentium 4), IBM/
Motorola PowerPC (Macintosh), MIPS,
Intel IA64, ...!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (4)! Garcia, Spring 2010 © UCB!

Book: Programming From the Ground Up!
"“A new book was just released which is 
based on a new concept - teaching  
computer science through assembly 
language (Linux x86 assembly language,  
to be exact). This book teaches how the  
machine itself operates, rather than just 
the language. I've found that the key 
difference between mediocre and excellent
programmers is whether or not they know assembly
language. Those that do tend to understand
computers themselves at a much deeper level.
Although [almost!] unheard of today, this concept isn't
really all that new -- there used to not be much choice
in years past. Apple computers came with only BASIC
and assembly language, and there were books
available on assembly language for kids. This is why
the old-timers are often viewed as 'wizards': they had
to know assembly language programming.” 
 -- slashdot.org comment, 2004-02-05 	

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (5)! Garcia, Spring 2010 © UCB!

Instruction Set Architectures!

• Early trend was to add more and more
instructions to new CPUs to do
elaborate operations!

• VAX architecture had an instruction to
multiply polynomials!!

• RISC philosophy (Cocke IBM,
Patterson, Hennessy, 1980s) –  
Reduced Instruction Set Computing!

• Keep the instruction set small and simple,
makes it easier to build fast hardware.!

• Let software do complicated operations by
composing simpler ones.!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (6)! Garcia, Spring 2010 © UCB!

MIPS Architecture!
• MIPS – semiconductor company
that built one of the first
commercial RISC architectures!

• We will study the MIPS
architecture in some detail in this
class (also used in upper division
courses CS 152, 162, 164)!

• Why MIPS instead of Intel 80x86?!
• MIPS is simple, elegant. Donʼt want
to get bogged down in gritty details.!

• MIPS widely used in embedded apps,
x86 little used in embedded, and more
embedded computers than PCs!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (7)! Garcia, Spring 2010 © UCB!

Assembly Variables: Registers (1/4)!

• Unlike HLL like C or Java, assembly
cannot use variables!

• Why not? Keep Hardware Simple!

• Assembly Operands are registers!
• limited number of special locations built
directly into the hardware!

• operations can only be performed on
these!!

• Benefit: Since registers are directly in
hardware, they are very fast  
(faster than 1 billionth of a second)!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (8)! Garcia, Spring 2010 © UCB!

Assembly Variables: Registers (2/4)!

• Drawback: Since registers are in
hardware, there are a predetermined
number of them!

• Solution: MIPS code must be very
carefully put together to efficiently use
registers!

• 32 registers in MIPS!
• Why 32? Smaller is faster!

• Each MIPS register is 32 bits wide!
• Groups of 32 bits called a word in MIPS!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (9)! Garcia, Spring 2010 © UCB!

Assembly Variables: Registers (3/4)!

• Registers are numbered from 0 to 31!
• Each register can be referred to by
number or name!

• Number references:!
$0, $1, $2, … $30, $31!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (10)! Garcia, Spring 2010 © UCB!

Assembly Variables: Registers (4/4)!

• By convention, each register also has
a name to make it easier to code!

• For now:!
$16 - $23 ! !$s0 - $s7!
! !(correspond to C variables)!
$8 - $15 ! !$t0 - $t7!
! !(correspond to temporary variables)!
Later will explain other 16 register names!

• In general, use names to make your
code more readable!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (11)! Garcia, Spring 2010 © UCB!

C, Java variables vs. registers!

• In C (and most High Level Languages)
variables declared first and given a type!

• Example:  
int fahr, celsius;
char a, b, c, d, e;

• Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).!

• In Assembly Language, the registers
have no type; operation determines how
register contents are treated!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (12)! Garcia, Spring 2010 © UCB!

Comments in Assembly!

• Another way to make your code more
readable: comments!!

• Hash (#) is used for MIPS comments!
• anything from hash mark to end of line is
a comment and will be ignored!

• This is just like the C99 //!

• Note: Different from C.!
• C comments have format  
/* comment */  
so they can span many lines!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (13)! Garcia, Spring 2010 © UCB!

Project 1?!

a)  Done!!
b)  Almost done.!
c)  Started. Iʼm in the mix.!
d)   Just basically read it.!
e)  Havenʼt even started.!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (14)! Garcia, Spring 2010 © UCB!

Assembly Instructions!

• In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands!

• Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction!

• Instructions are related to operations
(=, +, -, *, /) in C or Java!

• Ok, enough already…gimme my MIPS!!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (15)! Garcia, Spring 2010 © UCB!

MIPS Addition and Subtraction (1/4)!
• Syntax of Instructions:!

1 !2,3,4!
where:!
1) operation by name !
2) operand getting result (“destination”)!
3) 1st operand for operation (“source1”)!
4) 2nd operand for operation (“source2”)!

• Syntax is rigid:!
• 1 operator, 3 operands!
• Why? Keep Hardware simple via regularity!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (16)! Garcia, Spring 2010 © UCB!

Addition and Subtraction of Integers (2/4)!

• Addition in Assembly!
• Example: !add $s0,$s1,$s2 (in MIPS)!
!Equivalent to: !a = b + c (in C)!
where MIPS registers $s0,$s1,$s2 are
associated with C variables a, b, c !

• Subtraction in Assembly!
• Example: !sub $s3,$s4,$s5 (in MIPS)!
!Equivalent to: !d = e - f (in C)!
where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, f !

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (17)! Garcia, Spring 2010 © UCB!

Addition and Subtraction of Integers (3/4)!

• How do the following C statement?!
a = b + c + d - e;

• Break into multiple instructions!
add $t0, $s1, $s2 # temp = b + c
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

• Notice: A single line of C may break up
into several lines of MIPS.!

• Notice: Everything after the hash mark
on each line is ignored (comments)!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (18)! Garcia, Spring 2010 © UCB!

Addition and Subtraction of Integers (4/4)!
• How do we do this?!

f = (g + h) - (i + j);

• Use intermediate temporary register!
add $t0,$s1,$s2 # temp = g + h
add $t1,$s3,$s4 # temp = i + j
sub $s0,$t0,$t1 # f=(g+h)-(i+j)

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (19)! Garcia, Spring 2010 © UCB!

Register Zero!
• One particular immediate, the number
zero (0), appears very often in code.!

• So we define register zero ($0 or
$zero) to always have the value 0; eg!
add $s0,$s1,$zero (in MIPS)
 f = g (in C)!
where MIPS registers $s0,$s1 are
associated with C variables f, g!

• defined in hardware, so an instruction !
!add $zero,$zero,$s0!

!will not do anything!!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (20)! Garcia, Spring 2010 © UCB!

Immediates!

• Immediates are numerical constants.!
• They appear often in code, so there
are special instructions for them.!

• Add Immediate:!
 addi $s0,$s1,10 (in MIPS)
 f = g + 10 (in C)!
where MIPS registers $s0,$s1 are
associated with C variables f, g

• Syntax similar to add instruction,
except that last argument is a number
instead of a register.!

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (21)! Garcia, Spring 2010 © UCB!

Immediates!

• There is no Subtract Immediate in
MIPS: Why?!

• Limit types of operations that can be
done to absolute minimum !

• if an operation can be decomposed into a
simpler operation, donʼt include it!
• addi …, -X = subi …, X => so no subi!

• addi $s0,$s1,-10 (in MIPS)
 f = g - 10 (in C)!
where MIPS registers $s0,$s1 are
associated with C variables f, g

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (22)! Garcia, Spring 2010 © UCB!

Peer Instruction!

1)  Since there are only 8 local ($s) and 8
temp ($t) variables, we canʼt write
MIPS for C exprs that contain > 16 vars.!

2)  If p (stored in $s0) were a pointer to an
array of ints, then p++; would be
addi $s0 $s0 1

 12
a) FF
b) FT
c) TF
d) TT
e)dunno

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (23)! Garcia, Spring 2010 © UCB!

“And in Conclusion…”!

• In MIPS Assembly Language:!
• Registers replace C variables!
• One Instruction (simple operation) per line!
• Simpler is Better!
• Smaller is Faster!

• New Instructions:!
add, addi, sub!

• New Registers:!
C Variables: $s0 - $s7!
Temporary Variables: $t0 - $t9!
Zero: $zero

CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (24)! Garcia, Spring 2010 © UCB!

Administrivia!
• Project 1!

• Due next Saturday at 11:59PM!
• Donʼt use up all your slip days!

• We will strive to give grades back quickly!
• You will have one week to ask for regrade!
• After that one week, the grade will be frozen!

• Regrading projects/exams: possible to go
up or down; weʼll regrade whole thing!

•  Beware: no complaints if grade goes down!

•  Do you want a Faux Exam?!

