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 Lecture 7 – C Memory Management 

 2010-02-03!

 Flexible plastic displays ⇒  
Phicot has come up with a  

way to print silicon electronics onto plastic 
as they are fed through rollers.  The secret 

was depositing silicon at low enough 
temperatures that wonʼt melt the plastic. !

www.technologyreview.com/computing/24433/ 
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Review!
• C has 3 pools of memory!

• Static storage: global variable storage, 
basically permanent, entire program run!

• The Stack: local variable storage, 
parameters, return address!

• The Heap (dynamic storage): malloc() 
grabs space from here, free() returns it. !

• malloc() handles free space with 
freelist. Three different ways to find free 
space when given a request:!

• First fit (find first one thatʼs free)!
• Next fit (same as first, but remembers 
where left off)!

• Best fit (finds most “snug” free space)!

What programs 
use what areas? !
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Slab Allocator!

• A different approach to memory 
management (used in GNU libc)!
• Divide blocks in to “large” and “small” 
by picking an arbitrary threshold size.  
Blocks larger than this threshold are 
managed with a freelist (as before).!
• For small blocks, allocate blocks in 
sizes that are powers of 2!

• e.g., if program wants to allocate 20 
bytes, actually give it 32 bytes!
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Slab Allocator!

• Bookkeeping for small blocks is 
relatively easy: just use a bitmap for 
each range of blocks of the same size!
• Allocating is easy and fast: compute 
the size of the block to allocate and 
find a free bit in the corresponding 
bitmap.!
• Freeing is also easy and fast: figure 
out which slab the address belongs to 
and clear the corresponding bit.!
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Slab Allocator!

16 byte blocks:"

32 byte blocks:"

64 byte blocks:"

16 byte block bitmap:  11011000"

32 byte block bitmap:   0111"

64 byte block bitmap:   00"
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Slab Allocator Tradeoffs!

• Extremely fast for small blocks.!
• Slower for large blocks!

• But presumably the program will take 
more time to do something with a large 
block so the overhead is not as critical.!

• Minimal space overhead!
• No fragmentation (as we defined it 
before) for small blocks, but still have 
wasted space!!
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Internal vs. External Fragmentation!

• With the slab allocator, difference 
between requested size and next 
power of 2 is wasted!

• e.g., if program wants to allocate 20 
bytes and we give it a 32 byte block, 12 
bytes are unused.!

• We also refer to this as fragmentation, 
but call it internal fragmentation since 
the wasted space is actually within an 
allocated block.!
• External fragmentation: wasted space 
between allocated blocks.!
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Buddy System!

• Yet another memory management 
technique (used in Linux kernel)!
• Like GNUʼs “slab allocator”, but only 
allocate blocks in sizes that are 
powers of 2 (internal fragmentation is 
possible)!
• Keep separate free lists for each size!

• e.g., separate free lists for 16 byte, 32 
byte, 64 byte blocks, etc.!
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Buddy System!
• If no free block of size n is available, find 
a block of size 2n and split it in to two 
blocks of size n !
• When a block of size n is freed, if its 
neighbor of size n is also free, combine 
the blocks in to a single block of size 2n !

• Buddy is block in other half larger block  

• Same speed advantages as slab allocator!

buddies! NOT buddies!
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Allocation Schemes!

• So which memory management 
scheme (K&R, slab, buddy) is 
best?!

• There is no single best approach for 
every application.!

• Different applications have different 
allocation / deallocation patterns.  !

• A scheme that works well for one 
application may work poorly for 
another application.!
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Automatic Memory Management!

• Dynamically allocated memory is 
difficult to track – why not track it 
automatically?!
• If we can keep track of what memory is 
in use, we can reclaim everything else.!

• Unreachable memory is called garbage, 
the process of reclaiming it is called 
garbage collection.!

• So how do we track what is in use?!
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Tracking Memory Usage!

• Techniques depend heavily on the 
programming language and rely on 
help from the compiler.!
• Start with all pointers in global 
variables and local variables (root set).!
• Recursively examine dynamically 
allocated objects we see a pointer to.!

• We can do this in constant space by 
reversing the pointers on the way down!

• How do we recursively find pointers in 
dynamically allocated memory?!
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Tracking Memory Usage!
• Again, it depends heavily on the 

programming language and compiler.!
• Could have only a single type of dynamically 

allocated object in memory!
• E.g., simple Lisp/Scheme system with only cons 

cells (61Aʼs Scheme not “simple”)!

• Could use a strongly typed language (e.g., 
Java)!

• Donʼt allow conversion (casting) between 
arbitrary types.!

• C/C++ are not strongly typed.!

• Here are 3 schemes to collect garbage!
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Scheme 1: Reference Counting!

• For every chunk of dynamically 
allocated memory, keep a count of 
number of pointers that point to it.!
• When the count reaches 0, reclaim.!
• Simple assignment statements can 
result in a lot of work, since may 
update reference counts of many 
items!
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Reference Counting Example!

• For every chunk of dynamically 
allocated memory, keep a count of 
number of pointers that point to it.!

• When the count reaches 0, reclaim.!
int *p1, *p2; 
p1 = malloc(sizeof(int)); 
p2 = malloc(sizeof(int)); 
*p1 = 10; *p2 = 20;  

p1 
p2 

10!20!Reference !
count = 1!

Reference !
count = 1!
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Reference Counting Example!

• For every chunk of dynamically 
allocated memory, keep a count of 
number of pointers that point to it.!

• When the count reaches 0, reclaim.!
int *p1, *p2; 
p1 = malloc(sizeof(int)); 
p2 = malloc(sizeof(int)); 
*p1 = 10; *p2 = 20;  
p1 = p2; 

p1 
p2 

10!20!Reference !
count = 2!

Reference !
count = 0!
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Reference Counting (p1, p2 are pointers)!
p1 = p2; 

• Increment reference count for p2 
• If p1 held a valid value, decrement its 
reference count!
• If the reference count for p1 is now 0, 
reclaim the storage it points to.!

• If the storage pointed to by p1 held other 
pointers, decrement all of their reference 
counts, and so on…!

• Must also decrement reference count 
when local variables cease to exist.!
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Reference Counting Flaws!

• Extra overhead added to assignments, 
as well as ending a block of code.!
• Does not work for circular structures!!

• E.g., doubly linked list:!

X" Y" Z"
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Scheme 2: Mark and Sweep Garbage Col.!

•  Keep allocating new memory until memory is 
exhausted, then try to find unused memory.!

•  Consider objects in heap a graph, chunks of 
memory (objects) are graph nodes, pointers 
to memory are graph edges.!

•  Edge from A to B ⇒ A stores pointer to B!

•  Can start with the root set, perform a graph 
traversal, find all usable memory!!

•  2 Phases: !
1.  Mark used nodes!
2.  Sweep free ones, returning list of free nodes!
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Mark and Sweep!

• Graph traversal is relatively easy to 
implement recursively!

 void traverse(struct graph_node *node) { 
   /* visit this node */ 
   foreach child in node->children { 
      traverse(child); 
   } 
}!
• But with recursion, state is stored on the 

execution stack.!
• Garbage collection is invoked when not much 

memory left!

• As before, we could traverse in constant 
space (by reversing pointers)!
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Scheme 3: Copying Garbage Collection!

• Divide memory into two spaces, only 
one in use at any time.!
• When active space is exhausted, 
traverse the active space, copying all 
objects to the other space, then make 
the new space active and continue.!

• Only reachable objects are copied!!
• Use “forwarding pointers” to keep 
consistency!

• Simple solution to avoiding having to 
have a table of old and new addresses, 
and to mark objects already copied (see 
bonus slides)!
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Peer Instruction!

1)  Since automatic garbage collection can 
occur any time, it is more difficult to 
measure the execution time of a Java 
program vs. a C program.!

2)  We donʼt have automatic garbage 
collection in C because of efficiency.!

   12 
a) FF 
b) FT 
c) TF 
d) TT 
e)dunno 
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“And in Conclusion…”!
• Several techniques for managing heap via 
malloc and free: best-, first-, next-fit!

• 2 types of memory fragmentation: internal & 
external; all suffer from some kind of frag.!

• Each technique has strengths and 
weaknesses, none is definitively best!

• Automatic memory management relieves 
programmer from managing memory.!

• All require help from language and compiler!
• Reference Count: not for circular structures!
• Mark and Sweep: complicated and slow, works!
• Copying: Divides memory to copy good stuff!
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Bonus slides!

• These are extra slides that used to be 
included in lecture notes, but have 
been moved to this, the “bonus” area 
to serve as a supplement.!
• The slides will appear in the order they 
would have in the normal presentation!
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Forwarding Pointers: 1st copy “abc”!

From" To"

abc" def"

xyz"

abc"

?"
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Forwarding Pointers: leave ptr to new abc!

From" To"

abc" def"

xyz"

abc"

?"
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Forwarding Pointers : now copy “xyz”!

From" To"

def"

xyz"

abc"

?"

Forwarding pointer!
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Forwarding Pointers: leave ptr to new xyz!

From" To"

def" abc"

xyz"xyz"

Forwarding pointer!
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Forwarding Pointers: now copy “def”!

From" To"

def" abc"

xyz"

Forwarding pointer!

Forwarding pointer!

Since xyz was already copied,  
def uses xyzʼs forwarding pointer  
to find its new location!
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Forwarding Pointers!

From" To"

def" abc"

xyz"

def"

Forwarding pointer!

Forwarding pointer!

Since xyz was already copied,  
def uses xyzʼs forwarding pointer  
to find its new location!


