
CS61C L07 More Memory Management (1)! Garcia, Spring 2010 © UCB!

! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 7 – C Memory Management 

 2010-02-03!

 Flexible plastic displays ⇒  
Phicot has come up with a  

way to print silicon electronics onto plastic
as they are fed through rollers. The secret

was depositing silicon at low enough
temperatures that wonʼt melt the plastic. !

www.technologyreview.com/computing/24433/
CS61C L07 More Memory Management (2)! Garcia, Spring 2010 © UCB!

Review!
• C has 3 pools of memory!

• Static storage: global variable storage,
basically permanent, entire program run!

• The Stack: local variable storage,
parameters, return address!

• The Heap (dynamic storage): malloc()
grabs space from here, free() returns it. !

• malloc() handles free space with
freelist. Three different ways to find free
space when given a request:!

• First fit (find first one thatʼs free)!
• Next fit (same as first, but remembers
where left off)!

• Best fit (finds most “snug” free space)!

What programs
use what areas? !

CS61C L07 More Memory Management (3)! Garcia, Spring 2010 © UCB!

Slab Allocator!

• A different approach to memory
management (used in GNU libc)!
• Divide blocks in to “large” and “small”
by picking an arbitrary threshold size.
Blocks larger than this threshold are
managed with a freelist (as before).!
• For small blocks, allocate blocks in
sizes that are powers of 2!

• e.g., if program wants to allocate 20
bytes, actually give it 32 bytes!

CS61C L07 More Memory Management (4)! Garcia, Spring 2010 © UCB!

Slab Allocator!

• Bookkeeping for small blocks is
relatively easy: just use a bitmap for
each range of blocks of the same size!
• Allocating is easy and fast: compute
the size of the block to allocate and
find a free bit in the corresponding
bitmap.!
• Freeing is also easy and fast: figure
out which slab the address belongs to
and clear the corresponding bit.!

CS61C L07 More Memory Management (5)! Garcia, Spring 2010 © UCB!

Slab Allocator!

16 byte blocks:"

32 byte blocks:"

64 byte blocks:"

16 byte block bitmap: 11011000"

32 byte block bitmap: 0111"

64 byte block bitmap: 00"

CS61C L07 More Memory Management (6)! Garcia, Spring 2010 © UCB!

Slab Allocator Tradeoffs!

• Extremely fast for small blocks.!
• Slower for large blocks!

• But presumably the program will take
more time to do something with a large
block so the overhead is not as critical.!

• Minimal space overhead!
• No fragmentation (as we defined it
before) for small blocks, but still have
wasted space!!

CS61C L07 More Memory Management (7)! Garcia, Spring 2010 © UCB!

Internal vs. External Fragmentation!

• With the slab allocator, difference
between requested size and next
power of 2 is wasted!

• e.g., if program wants to allocate 20
bytes and we give it a 32 byte block, 12
bytes are unused.!

• We also refer to this as fragmentation,
but call it internal fragmentation since
the wasted space is actually within an
allocated block.!
• External fragmentation: wasted space
between allocated blocks.!

CS61C L07 More Memory Management (8)! Garcia, Spring 2010 © UCB!

Buddy System!

• Yet another memory management
technique (used in Linux kernel)!
• Like GNUʼs “slab allocator”, but only
allocate blocks in sizes that are
powers of 2 (internal fragmentation is
possible)!
• Keep separate free lists for each size!

• e.g., separate free lists for 16 byte, 32
byte, 64 byte blocks, etc.!

CS61C L07 More Memory Management (9)! Garcia, Spring 2010 © UCB!

Buddy System!
• If no free block of size n is available, find
a block of size 2n and split it in to two
blocks of size n !
• When a block of size n is freed, if its
neighbor of size n is also free, combine
the blocks in to a single block of size 2n !

• Buddy is block in other half larger block  

• Same speed advantages as slab allocator!

buddies! NOT buddies!

CS61C L07 More Memory Management (10)! Garcia, Spring 2010 © UCB!

Allocation Schemes!

• So which memory management
scheme (K&R, slab, buddy) is
best?!

• There is no single best approach for
every application.!

• Different applications have different
allocation / deallocation patterns. !

• A scheme that works well for one
application may work poorly for
another application.!

CS61C L07 More Memory Management (13)! Garcia, Spring 2010 © UCB!

Automatic Memory Management!

• Dynamically allocated memory is
difficult to track – why not track it
automatically?!
• If we can keep track of what memory is
in use, we can reclaim everything else.!

• Unreachable memory is called garbage,
the process of reclaiming it is called
garbage collection.!

• So how do we track what is in use?!

CS61C L07 More Memory Management (14)! Garcia, Spring 2010 © UCB!

Tracking Memory Usage!

• Techniques depend heavily on the
programming language and rely on
help from the compiler.!
• Start with all pointers in global
variables and local variables (root set).!
• Recursively examine dynamically
allocated objects we see a pointer to.!

• We can do this in constant space by
reversing the pointers on the way down!

• How do we recursively find pointers in
dynamically allocated memory?!

CS61C L07 More Memory Management (15)! Garcia, Spring 2010 © UCB!

Tracking Memory Usage!
• Again, it depends heavily on the

programming language and compiler.!
• Could have only a single type of dynamically

allocated object in memory!
• E.g., simple Lisp/Scheme system with only cons

cells (61Aʼs Scheme not “simple”)!

• Could use a strongly typed language (e.g.,
Java)!

• Donʼt allow conversion (casting) between
arbitrary types.!

• C/C++ are not strongly typed.!

• Here are 3 schemes to collect garbage!

CS61C L07 More Memory Management (16)! Garcia, Spring 2010 © UCB!

Scheme 1: Reference Counting!

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.!
• When the count reaches 0, reclaim.!
• Simple assignment statements can
result in a lot of work, since may
update reference counts of many
items!

CS61C L07 More Memory Management (17)! Garcia, Spring 2010 © UCB!

Reference Counting Example!

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.!

• When the count reaches 0, reclaim.!
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;

p1
p2

10!20!Reference !
count = 1!

Reference !
count = 1!

CS61C L07 More Memory Management (18)! Garcia, Spring 2010 © UCB!

Reference Counting Example!

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.!

• When the count reaches 0, reclaim.!
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;
p1 = p2;

p1
p2

10!20!Reference !
count = 2!

Reference !
count = 0!

CS61C L07 More Memory Management (19)! Garcia, Spring 2010 © UCB!

Reference Counting (p1, p2 are pointers)!
p1 = p2;

• Increment reference count for p2
• If p1 held a valid value, decrement its
reference count!
• If the reference count for p1 is now 0,
reclaim the storage it points to.!

• If the storage pointed to by p1 held other
pointers, decrement all of their reference
counts, and so on…!

• Must also decrement reference count
when local variables cease to exist.!

CS61C L07 More Memory Management (20)! Garcia, Spring 2010 © UCB!

Reference Counting Flaws!

• Extra overhead added to assignments,
as well as ending a block of code.!
• Does not work for circular structures!!

• E.g., doubly linked list:!

X" Y" Z"

CS61C L07 More Memory Management (21)! Garcia, Spring 2010 © UCB!

Scheme 2: Mark and Sweep Garbage Col.!

•  Keep allocating new memory until memory is
exhausted, then try to find unused memory.!

•  Consider objects in heap a graph, chunks of
memory (objects) are graph nodes, pointers
to memory are graph edges.!

•  Edge from A to B ⇒ A stores pointer to B!

•  Can start with the root set, perform a graph
traversal, find all usable memory!!

•  2 Phases: !
1.  Mark used nodes!
2.  Sweep free ones, returning list of free nodes!

CS61C L07 More Memory Management (22)! Garcia, Spring 2010 © UCB!

Mark and Sweep!

• Graph traversal is relatively easy to
implement recursively!

 void traverse(struct graph_node *node) {
 /* visit this node */
 foreach child in node->children {
 traverse(child);
 }
}!
• But with recursion, state is stored on the

execution stack.!
• Garbage collection is invoked when not much

memory left!

• As before, we could traverse in constant
space (by reversing pointers)!

CS61C L07 More Memory Management (23)! Garcia, Spring 2010 © UCB!

Scheme 3: Copying Garbage Collection!

• Divide memory into two spaces, only
one in use at any time.!
• When active space is exhausted,
traverse the active space, copying all
objects to the other space, then make
the new space active and continue.!

• Only reachable objects are copied!!
• Use “forwarding pointers” to keep
consistency!

• Simple solution to avoiding having to
have a table of old and new addresses,
and to mark objects already copied (see
bonus slides)!

CS61C L07 More Memory Management (24)! Garcia, Spring 2010 © UCB!

Peer Instruction!

1)  Since automatic garbage collection can
occur any time, it is more difficult to
measure the execution time of a Java
program vs. a C program.!

2)  We donʼt have automatic garbage
collection in C because of efficiency.!

 12
a) FF
b) FT
c) TF
d) TT
e)dunno

CS61C L07 More Memory Management (25)! Garcia, Spring 2010 © UCB!

“And in Conclusion…”!
• Several techniques for managing heap via
malloc and free: best-, first-, next-fit!

• 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.!

• Each technique has strengths and
weaknesses, none is definitively best!

• Automatic memory management relieves
programmer from managing memory.!

• All require help from language and compiler!
• Reference Count: not for circular structures!
• Mark and Sweep: complicated and slow, works!
• Copying: Divides memory to copy good stuff!

CS61C L07 More Memory Management (26)! Garcia, Spring 2010 © UCB!

Bonus slides!

• These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.!
• The slides will appear in the order they
would have in the normal presentation!

CS61C L07 More Memory Management (27)! Garcia, Spring 2010 © UCB!

Forwarding Pointers: 1st copy “abc”!

From" To"

abc" def"

xyz"

abc"

?"

CS61C L07 More Memory Management (28)! Garcia, Spring 2010 © UCB!

Forwarding Pointers: leave ptr to new abc!

From" To"

abc" def"

xyz"

abc"

?"

CS61C L07 More Memory Management (29)! Garcia, Spring 2010 © UCB!

Forwarding Pointers : now copy “xyz”!

From" To"

def"

xyz"

abc"

?"

Forwarding pointer!

CS61C L07 More Memory Management (30)! Garcia, Spring 2010 © UCB!

Forwarding Pointers: leave ptr to new xyz!

From" To"

def" abc"

xyz"xyz"

Forwarding pointer!

CS61C L07 More Memory Management (31)! Garcia, Spring 2010 © UCB!

Forwarding Pointers: now copy “def”!

From" To"

def" abc"

xyz"

Forwarding pointer!

Forwarding pointer!

Since xyz was already copied,  
def uses xyzʼs forwarding pointer  
to find its new location!

CS61C L07 More Memory Management (32)! Garcia, Spring 2010 © UCB!

Forwarding Pointers!

From" To"

def" abc"

xyz"

def"

Forwarding pointer!

Forwarding pointer!

Since xyz was already copied,  
def uses xyzʼs forwarding pointer  
to find its new location!

