
CS61C L06 C Memory Management (1)! Garcia, Spring 2010 © UCB!

! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia 

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 6 – C Memory Management 

 2010-02-01!

Tape ogre awakens! ⇒ 
IBM Zurich has made  

a new tape material that can store 29.5 
gigabits/in2, i.e., a cartridge that can 

hold 35 terabytes of data, more than 40 
times the current capacity. !

www.technologyreview.com/computing/24406 



CS61C L06 C Memory Management (2)! Garcia, Spring 2010 © UCB!

Review!

• Use handles to change pointers!
• Create abstractions (and your own 
data structures) with structures!
• Dynamically allocated heap memory 
must be manually deallocated in C.!

• Use malloc() and free() to allocate 
and de-allocate persistent storage.!



CS61C L06 C Memory Management (3)! Garcia, Spring 2010 © UCB!

Donʼt forget the globals!!
•  Remember:!

•  Structure declaration does not allocate memory!
•  Variable declaration does allocate memory!

•  So far we have talked about several different ways to 
allocate memory for data:!

1.  Declaration of a local variable!
int i; struct Node list; char *string; int ar[n];!

3.  “Dynamic” allocation at runtime by calling allocation 
function (alloc).!

    ptr = (struct Node *) malloc(sizeof(struct Node)*n);!

•  One more possibility exists…!
3.  Data declared outside of any procedure  

(i.e., before main).!
•  Similar to #1 above, but has “global” scope.!

int myGlobal; 
main() {  
} 



CS61C L06 C Memory Management (4)! Garcia, Spring 2010 © UCB!

C Memory Management!
• C has 3 pools of memory!

• Static storage: global variable storage, 
basically permanent, entire program run!

• The Stack: local variable storage, 
parameters, return address  
(location of “activation records” in Java or 
“stack frame” in C)!

• The Heap (dynamic malloc storage): data 
lives until deallocated by programmer !

• C requires knowing where objects are in 
memory, otherwise things donʼt work as 
expected!

• Java hides location of objects!



CS61C L06 C Memory Management (5)! Garcia, Spring 2010 © UCB!

Normal C Memory Management!
• A programʼs address 
space contains 4 regions:!

• stack: local variables, 
grows downward !

• heap: space requested for 
pointers via malloc() ; 
resizes dynamically, 
grows upward!

• static data: variables 
declared outside main, 
does not grow or shrink!

• code: loaded when 
program starts,  
does not change!

code"
static data"
heap"

stack"

For now, OS somehow 
prevents accesses between  
stack and heap (gray hash  
lines). Wait for virtual memory"

~ FFFF FFFFhex"

~ 0hex"



CS61C L06 C Memory Management (6)! Garcia, Spring 2010 © UCB!

Where are variables allocated?!

• If declared outside a procedure,  
allocated in “static” storage !
• If declared inside procedure,  
allocated on the “stack” 
and freed when procedure returns.!

• NB: main() is a procedure!

int myGlobal; 
main() { 
  int myTemp; 
} 



CS61C L06 C Memory Management (7)! Garcia, Spring 2010 © UCB!

The Stack!
• Stack frame includes:!

• Return “instruction” address!
• Parameters!
• Space for other local variables!

• Stack frames contiguous  
blocks of memory; stack pointer 
tells where top stack frame is!
• When procedure ends, stack 
frame is tossed off the stack; 
frees memory for future stack 
frames! frame"

frame"

frame"

frame"SP"



CS61C L06 C Memory Management (8)! Garcia, Spring 2010 © UCB!

Stack!

• Last In, First Out (LIFO) data structure!
main () 
{ a(0);  
} 

void a (int m) 
{ b(1);  
} 
void b (int n) 
{ c(2);  
} 
void c (int o) 
{ d(3);  
} void d (int p) 
{  
} 

stack"

Stack Pointer"

Stack Pointer"

Stack Pointer"

Stack Pointer"

Stack Pointer"

Stack 
grows 
down"



CS61C L06 C Memory Management (9)! Garcia, Spring 2010 © UCB!

• Pointers in C allow access to deallocated 
memory, leading to hard-to-find bugs !!
int *ptr () { 
 int y; 
 y = 3; 
 return &y; 
}; 
main () { 
 int *stackAddr,content;  
 stackAddr = ptr(); 
 content = *stackAddr; 
 printf("%d", content); /* 3 */ 
 content = *stackAddr; 
 printf("%d", content); /*13451514 */ 
}; 

Who cares about stack management?!

main"

ptr() 
(y==3)"

SP"

main"
SP"

main"

printf() 
(y==?)"

SP"



CS61C L06 C Memory Management (10)! Garcia, Spring 2010 © UCB!

The Heap (Dynamic memory)!
• Large pool of memory,  
not allocated in contiguous order!

• back-to-back requests for heap memory 
could result blocks very far apart!

• where Java new command allocates memory!

• In C, specify number of bytes of memory 
explicitly to allocate item!
 int *ptr; 
ptr = (int *) malloc(sizeof(int)); 
/* malloc returns type (void *), 
so need to cast to right type */ 
• malloc(): Allocates raw, uninitialized 
memory from heap!



CS61C L06 C Memory Management (11)! Garcia, Spring 2010 © UCB!

Memory Management!

• How do we manage memory?!
• Code, Static storage are easy:  
they never grow or shrink!
• Stack space is also easy:  
stack frames are created and 
destroyed in last-in, first-out (LIFO) 
order!
• Managing the heap is tricky: 
memory can be allocated / deallocated 
at any time!



CS61C L06 C Memory Management (12)! Garcia, Spring 2010 © UCB!

Heap Management Requirements!

• Want malloc() and free() to run 
quickly.!
• Want minimal memory overhead!
• Want to avoid fragmentation* –  
when most of our free memory is in 
many small chunks"

• In this case, we might have many free 
bytes but not be able to satisfy a large 
request since the free bytes are not 
contiguous in memory.!

* This is technically called external fragmention"



CS61C L06 C Memory Management (13)! Garcia, Spring 2010 © UCB!

Heap Management!

• An example!
• Request R1 for 100 
bytes!

• Request R2 for 1 byte!
• Memory from R1 is 
freed!

• Request R3 for 50 
bytes!

R2 (1 byte)"

R1 (100 bytes)"



CS61C L06 C Memory Management (14)! Garcia, Spring 2010 © UCB!

Heap Management!

• An example!
• Request R1 for 100 
bytes!

• Request R2 for 1 byte!
• Memory from R1 is 
freed!

• Request R3 for 50 
bytes!

R2 (1 byte)"

R3?"

R3?"



CS61C L06 C Memory Management (15)! Garcia, Spring 2010 © UCB!

K&R Malloc/Free Implementation!

• From Section 8.7 of K&R!
• Code in the book uses some C language 
features we havenʼt discussed and is 
written in a very terse style, donʼt worry if 
you canʼt decipher the code!

• Each block of memory is preceded by 
a header that has two fields:  
size of the block and  
a pointer to the next block!
• All free blocks are kept in a circular 
linked list, the pointer field is unused 
in an allocated block!



CS61C L06 C Memory Management (16)! Garcia, Spring 2010 © UCB!

K&R Implementation!

• malloc() searches the free list for a 
block that is big enough.  If none is 
found, more memory is requested from 
the operating system. If what it gets 
canʼt satisfy the request, it fails.!
• free() checks if the blocks adjacent to 
the freed block are also free!

• If so, adjacent free blocks are merged 
(coalesced) into a single, larger free block!

• Otherwise, the freed block is just added to 
the free list!



CS61C L06 C Memory Management (17)! Garcia, Spring 2010 © UCB!

Choosing a block in malloc() 

• If there are multiple free blocks of 
memory that are big enough for some 
request, how do we choose which one 
to use?!

• best-fit: choose the smallest block that is 
big enough for the request!

• first-fit: choose the first block we see that 
is big enough!

• next-fit: like first-fit but remember where 
we finished searching and resume 
searching from there!



CS61C L06 C Memory Management (18)! Garcia, Spring 2010 © UCB!

Peer Instruction – Pros and Cons of fits!

1)  first-fit results in many small blocks 
at the beginning of the free list !

2)  next-fit is slower than first-fit, since 
it takes longer in steady state to find 
a match !

3)  best-fit leaves lots of tiny blocks !

   123 
a) FFT 
b) FTT 
c) TFF 
d) TFT 
e) TTT 



CS61C L06 C Memory Management (19)! Garcia, Spring 2010 © UCB!

And in conclusion…!
• C has 3 pools of memory!

• Static storage: global variable storage, 
basically permanent, entire program run!

• The Stack: local variable storage, 
parameters, return address!

• The Heap (dynamic storage): malloc() 
grabs space from here, free() returns it. !

• malloc() handles free space with 
freelist. Three different ways to find free 
space when given a request:!

• First fit (find first one thatʼs free)!
• Next fit (same as first, but remembers 
where left off)!

• Best fit (finds most “snug” free space)!



CS61C L06 C Memory Management (20)! Garcia, Spring 2010 © UCB!

Bonus slides!

• These are extra slides that used to be 
included in lecture notes, but have 
been moved to this, the “bonus” area 
to serve as a supplement.!
• The slides will appear in the order they 
would have in the normal presentation!



CS61C L06 C Memory Management (21)! Garcia, Spring 2010 © UCB!

Intel 80x86 C Memory Management!
• A C programʼs 80x86 
address space :!

• heap: space requested for 
pointers via malloc(); 
resizes dynamically, 
grows upward!

• static data: variables 
declared outside main, 
does not grow or shrink!

• code: loaded when 
program starts, does not 
change!

• stack: local variables, 
grows downward!

code"
static data"
heap"

stack"
~ 08000000hex"



CS61C L06 C Memory Management (22)! Garcia, Spring 2010 © UCB!

Tradeoffs of allocation policies!

• Best-fit: Tries to limit fragmentation 
but at the cost of time (must examine 
all free blocks for each malloc). 
Leaves lots of small blocks (why?)!
• First-fit: Quicker than best-fit (why?) 
but potentially more fragmentation.  
Tends to concentrate small blocks at 
the beginning of the free list (why?)!
• Next-fit: Does not concentrate small 
blocks at front like first-fit, should be 
faster as a result.!


