inst.eecs.berkeley. edu/~cs6lc

CS61C : Machine Structures
Lecture 6 — C Memory Management
2010-02-01

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Tape ogre awakens! =
IBM Zurich has made

a new tape material that can store 29.5 -
gigabits/in?, i.e., a cartridge that can
hold 35 terabytes of data, more than 40
times the current capacity. - :

w www . technologyreview.com/computing/24406

CS61C L06 C Memory Management (1) Garcia, Spring 2010 © UCB|

Don’t forget the globals!

« Remember:
Structure declaration does not allocate memory
Variable declaration does allocate memory

* So far we have talked about several different ways to
allocate memory for data:
1. Declaration of a local variable
int i; struct Node list; char *string; int ar[n];
3. “Dynamic” allocation at runtime by calling allocation
function (alloc).

ptr = (struct Node *) malloc(sizeof (struct Node)*n);

¢ One more possibility exists... int myGlobal;

3. Data declared outside of any procedure main() {
(i.e., before main). }

Similar to #1 above, but has “global” scope.

ﬂ CS61C L06 C Memory Management (3)

Garcia, Spring 2010 © UCB|

Normal C Memory Management

+A program’s address ‘| stack
space contains 4 regions: 7 77717~ 7/
- stack: local variables,
grows downward
- heap: space requested for A
pointers viamalloc () ; T T
resizes dynamically, heap
grows upward static data
- static data: variables
declared outside main, code
does not grow or shrink ..,

For now, OS somehow
prevents accesses between
stack and heap (gray hash
lines). Wait for virtual memory

Garcia, Spring 2010 © UCB|

- code: loaded when
program starts,
does not change

CS61C L06 C Memory Management (5)

Review

«Use handles to change pointers

- Create abstractions (and your own
data structures) with structures

* Dynamically allocated heap memory
must be manually deallocated in C.

*Usemalloc () and free () to allocate
and de-allocate persistent storage.

@ CS61C L06 C Memory

Garcia, Spring 2010 © UCB|

C Memory Management
«C has 3 pools of memory

- Static storage: global variable storage,
basically permanent, entire program run

- The Stack: local variable storage,
parameters, return address
(location of “activation records” in Java or
“stack frame” in C)

» The Heap (dynamic malloc storage): data
lives until deallocated by programmer

+C requires knowing where objects are in
memory, otherwise things don’t work as
expected

Q(- Java hides location of objects

CS61C L06 C Memory Garcia, Spring 2010 © UCB|

Where are variables allocated?

«If declared outside a procedure,
S Cafatirn

allocated in “static” storage

«If declared inside procedure,
allocated on the “stack”
and freed when procedure returns.

*NB: main () is a procedure

int myGlobal;
main() {

int myTemp;
@ 8616 L06 C Hemory

Garcia, Spring 2010 © UCB|

The Stack

« Stack frame includes:
* Return “instruction” address
- Parameters
- Space for other local variables

+ Stack frames contiguous SP~| frame
blocks of memory; stack pointer

tells where top stack frame is frame
*When procedure ends, stack

frame Is tossed off the stack; frame

frees memory for future stack f

frames rame

ﬂ CS61C L06 C Memory Management (7)

Garcia, Spring 2010 © UCB|

Who cares about stack management?

*Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !

inti:ft;. 0 main sel main main
= 3; -

zeturn &y; ?TZ) ?Tﬁg;

. spl— spl—

main () {
int *stackAddr,content;
stackAddr = ptr();
content = *stackAddr;
printf ("%d", content); /* 3 */
content = *stackAddr;
printf ("%d", content); /*13451514 */

@;
CS61C L06 C Memory Management (9)

Garcia, Spring 2010 © UCB|

Memory Management

*How do we manage memory?

*Code, Static storage are easy:
they never grow or shrink

«Stack space is also easy:
stack frames are created and
degtroyed in last-in, first-out (LIFO)
order

¢ Managing the heap is tricky:
memory can be allocated / deallocated
at any time

Q CSB1C L06 C Memory Management (1)

Garcia, Spring 2010 © UCB|

Stack

e Last In, First Out (LIFO) data structure

stack

main ()

0);
{a Stack
void a (int m) grows
{ b(1); down

}
void b (int n)
{ c(2);
}

void d (int p)
{
}

@ CS61C L06 C Memory

Stack Pointer —

Garcia, Spring 2010 © UCB|

The Heap (Dynamic memory)

«Large pool of memory,
not allocated in contiguous order

- back-to-back requests for heap memory
could result blocks very far apart

»where Java new command allocates memory

«In C, specify number of bytes of memory
explicitly to allocate item
int *ptr;
ptr = (int *) malloc(sizeof (int));
/* malloc returns type (void *),
so need to cast to right type */

emalloc (): Allocates raw, uninitialized
memory from heap

CS61C L06 C Memory 10) Garcia, Spring 2010 © UCB|

Heap Management Requirements

Wantmalloc () and free () to run
quickly.

« Want minimal memory overhead

«Want to avoid fragmentation* —
when most of our free memory is in
many small chunks

*In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

2 ,* This is technically called external fragmention

CS61C L06 C Memory 12) Garcia, Spring 2010 © UCB|

Heap Management

« An example

* Request R1 for 100
bytes

* Request R2 for 1 byte

*Memory from R1is R2(1byte
freed

R1 (100 bytes)

* Request R3 for 50
bytes

ﬂ CS61C L06 C Memory Management (13)

Garcia, Spring 2010 © UCB|

K&R Malloc/Free Implementation

*From Section 8.7 of K&R

» Code in the book uses some C language
features we haven’t discussed and is
written in a very terse style, don’t worry if
you can’t decipher the code

«Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block

« All free blocks are kept in a circular
linked list, the pointer field is unused
2 ,in an allocated block

CS61C L06 C Memory Management (15)

Garcia, Spring 2010 © UCB|

Choosing a block inmalloc ()

«If there are multiple free blocks of
memory that are big enough for some
{'eques’;, how do we choose which one

0 use?

- best-fit: choose the smallest block that is
big enough for the request

- first-fit: choose the first block we see that
is big enough

« next-fit: like first-fit but remember where
we finished searching and resume
searching from there

Q CSB1C L06 C Memory Management (17)

Heap Management

* An example

* Request R1 for 100 R3?
bytes

* Request R2 for 1 byte

*Memory from R1is R2(1byte
freed

* Request R3 for 50
bytes R3?

Q CSB1C L06 C Memory 14)

Garcia, Spring 2010 © UCB|

K&R Implementation

emalloc () searches the free list for a
block that is big enough. If none is
found, more memory is requested from
the operating system. If what it gets
can’t satisfy the request, it fails.

«free () checks if the blocks adjacent to
the freed block are also free

+If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

+ Otherwise, the freed block is just added to
the free list

Q CS61C L06 C Memory (16)

Garcia, Spring 2010 © UCB|

Peer Instruction — Pros and Cons of fits

1) first-fit results in many small blocks 123
at the beginning of the free list a) FET

b) FTT
2) next-fit is slower than first-fit, since c; TFF

it takes longer in steady state to find |4) TFT
a match e) TTT

3) best-fit leaves lots of tiny blocks

Garcia, Spring 2010 © UCB|

Garcia, Spring 2010 © UCB|

And in conclusion...
*C has 3 pools of memory

- Static storage: global variable storage,
basically permanent, entire program run

- The Stack: local variable storage,
parameters, return address

» The Heap (dynamic storage): malloc ()
grabs space from here, free () returns it.

emalloc (I)hhandles free space with

freelist.

ree_different ways to find free

space when given a request:
« First fit (find first one that’s free)

 Next fit (same as first, but
where left off)

ﬂ - Best fit (finds most “snug

CS61C L06 C Memory Management (19)

remembers

” free space)

Garcia, Spring 2010 © UCB|

Bonus slides

*These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.

*The slides will appear in the order they
would have in the normal presentation

V

) D

Q CS61C L06 C Memory Garcia, Spring 2010 © UCB|

Intel 80x86 C Memory Management

«A C program’s 80x86
address space :

- heap: space requested for
pointers viamalloc();
resizes dynamically,
grows upward

D7/
heap

- static data: variables
declared outside main,

static data

code

does not grow or shrink

« code: loaded when
program starts, does not

stack

v

change

- stack: local variables,
grows downward

CS61C L06 C Memory Management (21)

Garcia, Spring 2010 © UCB|

Tradeoffs of allocation policies

« Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each maIIoch
Leaves lots of small blocks (why?)

«First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)

* Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

Q CS61C L06 C Memory Garcia, Spring 2010 © UCB|

