
CS61C L05 Introduction to C (pt 3) (1)! Garcia, Spring 2010 © UCB!

! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 5 – Introduction to C (pt 3) 
C Memory Management 

 2010-01-29!

Appleʼs iPad, day 2 ⇒ 
After the dust has settled, 

 what do we have? Name causes
chuckles & lawsuits (Fujitsu). “Haters”

say nothing new, closed system. !
apple.com/ipad	

CS61C L05 Introduction to C (pt 3) (2)! Garcia, Spring 2010 © UCB!

Review!
• Pointers and arrays are virtually same!
• C knows how to increment pointers!
• C is an efficient language, with little
protection!

• Array bounds not checked!
• Variables not automatically initialized!

• (Beware) The cost of efficiency is
more overhead for the programmer.!

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”!

CS61C L05 Introduction to C (pt 3) (3)! Garcia, Spring 2010 © UCB!

Pointers (1/4)!

• Sometimes you want to have a
procedure increment a variable?!
• What gets printed?!

void AddOne(int x)
{ x = x + 1; }

int y = 5;
AddOne(y);
printf(“y = %d\n”, y);

y = 5

…review…!

CS61C L05 Introduction to C (pt 3) (4)! Garcia, Spring 2010 © UCB!

Pointers (2/4)!

• Solved by passing in a pointer to our
subroutine.!
• Now what gets printed?!

void AddOne(int *p)
{ *p = *p + 1; }

int y = 5;
AddOne(&y);
printf(“y = %d\n”, y);

y = 6

…review…!

CS61C L05 Introduction to C (pt 3) (5)! Garcia, Spring 2010 © UCB!

Pointers (3/4)!

• But what if what you want changed is
a pointer?!
• What gets printed?!

void IncrementPtr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

CS61C L05 Introduction to C (pt 3) (6)! Garcia, Spring 2010 © UCB!

Pointers (4/4)!

• Solution! Pass a pointer to a pointer,
declared as **h!
• Now what gets printed?!

void IncrementPtr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

CS61C L05 Introduction to C (pt 3) (7)! Garcia, Spring 2010 © UCB!

Dynamic Memory Allocation (1/4)!
• C has operator sizeof() which gives size in bytes

(of type or variable)!
• Assume size of objects can be misleading and is bad

style, so use sizeof(type)!
•  Many years ago an int was 16 bits, and programs were

written with this assumption. !
•  What is the size of integers now?!

•  “sizeof” knows the size of arrays:!
int ar[3]; // Or: int ar[] = {54, 47, 99}!

sizeof(ar) ⇒ 12!
•  …as well for arrays whose size is determined at run-time:!
int n = 3;!

int ar[n]; // Or: int ar[fun_that_returns_3()];!

sizeof(ar) ⇒ 12!

CS61C L05 Introduction to C (pt 3) (8)! Garcia, Spring 2010 © UCB!

Dynamic Memory Allocation (2/4)!
• To allocate room for something new to
point to, use malloc() (with the help of a
typecast and sizeof): 
ptr = (int *) malloc (sizeof(int));!

• Now, ptr points to a space somewhere in
memory of size (sizeof(int)) in bytes.!
• (int *) simply tells the compiler what will
go into that space (called a typecast).!

• malloc is almost never used for 1 var!
ptr = (int *) malloc (n*sizeof(int));!

• This allocates an array of n integers.!

CS61C L05 Introduction to C (pt 3) (9)! Garcia, Spring 2010 © UCB!

Dynamic Memory Allocation (3/4)!
• Once malloc() is called, the memory
location contains garbage, so donʼt
use it until youʼve set its value.!
• After dynamically allocating space, we
must dynamically free it:!
free(ptr);!

• Use this command to clean up.!
• Even though the program frees all
memory on exit (or when main returns),
donʼt be lazy!!

• You never know when your main will get
transformed into a subroutine!!

CS61C L05 Introduction to C (pt 3) (10)! Garcia, Spring 2010 © UCB!

Dynamic Memory Allocation (4/4)!
• The following two things will cause your

program to crash or behave strangely later
on, and cause VERY VERY hard to figure
out bugs:!
• free()ing the same piece of memory twice!
• calling free() on something you didnʼt get

back from malloc() !

• The runtime does not check for these
mistakes!

• Memory allocation is so performance-critical
that there just isnʼt time to do this !

• The usual result is that you corrupt the memory
allocatorʼs internal structure!

• You wonʼt find out until much later on, in a
totally unrelated part of your code!!

CS61C L05 Introduction to C (pt 3) (11)! Garcia, Spring 2010 © UCB!

Arrays not implemented as youʼd think!
void foo() {
int *p, *q, x;
int a[4];
p = (int *) malloc (sizeof(int));
q = &x;

*p = 1; // p[0] would also work here
printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);

 *q = 2; // q[0] would also work here
printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);

 *a = 3; // a[0] would also work here
printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}
?" ?" ..." ..." 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 ..."

p q x"
?" ?" ?"

unnamed-malloc-space"
40" 20" 2" 3" 1"

*p:1, p:40, &p:12
*q:2, q:20, &q:16
*a:3, a:24, &a:24

K&R: “An array name is not a variable”!

a"
24"
?"

CS61C L05 Introduction to C (pt 3) (12)! Garcia, Spring 2010 © UCB!

Binky Pointer Video (thanks to NP @ SU)!

CS61C L05 Introduction to C (pt 3) (13)! Garcia, Spring 2010 © UCB!

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta!
1.  Kid meets giant Texas people exercising zen-like yoga. – Rolf O

2.  Kind men give ten percent extra, zestfully, youthfully. – Hava E

3.  Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. –
Gary M

4.  Kindness means giving, teaching, permeating excess zeal yourself. – Hava E

5.  Killing messengers gives terrible people exactly zero, yo

6.  Kindergarten means giving teachers perfect examples (of) zeal (&) youth

7.  Kissing mediocre girls/guys teaches people (to) expect zero (from) you

8.  Kinky Mean Girls Teach Penis-Extending Zen Yoga

9.  Kissing Mel Gibson, Tom Petty exclaimed: “Zesty, yo!” – Dan G

10.  Kissing me gives ten percent extra zeal & youth! – Dan G (borrowing parts)

CS61C L05 Introduction to C (pt 3) (14)! Garcia, Spring 2010 © UCB!

Which are guaranteed to print out 5? !

I: main() {  
 int *a-ptr = (int *)malloc(int);  
 *a-ptr = 5;  
 printf(“%d”, *a-ptr);  
 }!

II:main() {  
 int *p, a = 5;  
 p = &a; ...  
 /* code; a,p NEVER on LEFT of = */  
 printf(“%d”, a);  
 }!

Peer Instruction!

 I II  
a) - -  
b) - YES  
c) YES -  
d) YES YES  
e) No idea!

CS61C L05 Introduction to C (pt 3) (15)! Garcia, Spring 2010 © UCB!

“And in Conclusion…”!

• Use handles to change pointers!
• Create abstractions with structures!
• Dynamically allocated heap memory
must be manually deallocated in C.!

• Use malloc() and free() to allocate
and deallocate memory from heap.!

CS61C L05 Introduction to C (pt 3) (16)! Garcia, Spring 2010 © UCB!

Reference slides!

You ARE responsible for the
material on these slides (theyʼre

just taken from the reading
anyway) ; weʼve moved them to

the end and off-stage to give
more breathing room to lecture!!

CS61C L05 Introduction to C (pt 3) (17)! Garcia, Spring 2010 © UCB!

C structures : Overview!
• A struct is a data structure
composed from simpler data types.!

• Like a class in Java/C++ but without
methods or inheritance.!

struct point { /* type definition */
 int x;
 int y;
};

void PrintPoint(struct point p)
{
 printf(“(%d,%d)”, p.x, p.y);
}

struct point p1 = {0,10}; /* x=0, y=10 */

PrintPoint(p1);

As always in C, the argument is passed by “value” – a copy is made.!

CS61C L05 Introduction to C (pt 3) (18)! Garcia, Spring 2010 © UCB!

C structures: Pointers to them!

• Usually, more efficient to pass a
pointer to the struct.!
• The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.!
• The following are equivalent:!

struct point *p;
 /* code to assign to pointer */
printf(“x is %d\n”, (*p).x);
printf(“x is %d\n”, p->x);

CS61C L05 Introduction to C (pt 3) (19)! Garcia, Spring 2010 © UCB!

How big are structs?!

• Recall C operator sizeof() which
gives size in bytes (of type or variable)!
• How big is sizeof(p)? !
 struct p {

 char x;
 int y;

};!
• 5 bytes? 8 bytes? !
• Compiler may word align integer y!

CS61C L05 Introduction to C (pt 3) (20)! Garcia, Spring 2010 © UCB!

Linked List Example!

• Letʼs look at an example of using
structures, pointers, malloc(), and
free() to implement a linked list of
strings.!

/* node structure for linked list */
struct Node {
 char *value;
 struct Node *next;
};

Recursive  
definition!!

CS61C L05 Introduction to C (pt 3) (21)! Garcia, Spring 2010 © UCB!

typedef simplifies the code!
struct Node {
 char *value;
 struct Node *next;
};

/* "typedef" means define a new type */
typedef struct Node NodeStruct;
 … OR …
typedef struct Node {
 char *value;
 struct Node *next;
} NodeStruct;

 … THEN

 typedef NodeStruct *List;
 typedef char *String;

/* Note similarity! */
/* To define 2 nodes */

struct Node {
 char *value;
 struct Node *next;
} node1, node2;

String value;

CS61C L05 Introduction to C (pt 3) (22)! Garcia, Spring 2010 © UCB!

Linked List Example!
/* Add a string to an existing list */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

{
 String s1 = "abc", s2 = "cde";
 List theList = NULL;
 theList = cons(s2, theList);
 theList = cons(s1, theList);
/* or, just like (cons s1 (cons s2 nil)) */
 theList = cons(s1, cons(s2, NULL));

CS61C L05 Introduction to C (pt 3) (23)! Garcia, Spring 2010 © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

"abc"

…" …"
NULL"?"

s:"

CS61C L05 Introduction to C (pt 3) (24)! Garcia, Spring 2010 © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

"abc"

…" …"
NULL"?"

?" s:"

CS61C L05 Introduction to C (pt 3) (25)! Garcia, Spring 2010 © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

"abc"

…" …"
NULL"

?"

"????"

s:"

CS61C L05 Introduction to C (pt 3) (26)! Garcia, Spring 2010 © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

"abc"

…" …"
NULL"

?"

"abc"

s:"

CS61C L05 Introduction to C (pt 3) (27)! Garcia, Spring 2010 © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

s:"
"abc"

…" …"
NULL"

"abc"

CS61C L05 Introduction to C (pt 3) (28)! Garcia, Spring 2010 © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:" …" …"
NULL"

"abc"

s:"
"abc"

